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Foreword:

Special Issue - Silvilaser 2006
LiDAR Applications in Forest Inventory and Assessment

Yasumasa Hirata™

Applications of LiDAR/laser scanning systems to characterize forested areas have expanded rapidly over the last several
years, particularly in the domain of forest inventory. The application of LiIDAR data is expanding over an ever increasing range of
interest areas. Previous conferences relating to LiDAR application in forestry were held in Victoria, British Columbia, Canada,
March 14-15, 2002; Brisbane, Queensland, Australia, April 18-19, 2002; Umea, Sweden, September 2-4, 2003; Freiburg, Germany,
October 3-6, 2004 and Blacksburg, Virginia, USA, September 29-October 1, 2005. Japan Society of Forest Planning, Forestry and
Forest Products Research Institute and Ehime University organized an conference, Silvilaser 2006, which was the sixth in this
international series, in Matsuyama, Ehime, Japan, November, 7-10, 2006. In the 21* century, LiDAR systems are used worldwide for
natural resource assessment, and this conference generated interest in Asia as well as the rest of world.

The intention of Silvilaser 2006 was to provide a platform for information sharing and to enable the communication of
experiences users have had in using LIDAR data to meet a range of information needs. Developing the linkage between LiDAR
practitioners across a range of applications domains was also a conference goal. The aim of the conference was to present and
exchange state-of-the-art scientific as well as practical results and techniques resulting from airborne and terrestrial LiDAR
application in many domains of forestry. The conference contributed to explore links between researchers, producers, and end-
users of LIDAR products. The conference was made up of 6 sessions; (1) techniques for extraction of tree information, (2) mapping
and classification, (3) measurement for forest condition, (4) biomass and LAI estimation, (5) large scale forest inventory, and (6)
integration of LiDAR and optical sensor data.

This special issue is a compilation of contributed papers from the Silvilaser 2006 conference. These papers represent a
significant benchmark of LiDAR application in forest inventory and assessment. I believe that these studies will provide readers of
the Journal of Forest Planning with useful information and clues to apply LiDAR in wider domains of forestry.

* Shikoku Research Center, Forestry and Forest Products Research Institute

J. For. Plann. 13:139(2008)
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Estimation of Stand Density of Young Plantations using
Digitized Aerial Photographs in Ehime Prefecture, Japan

Rikiya Kaneko™', Yasushi Suzuki**, Jun'ichi Gotou**, Chitosi Eino™’,
Kosuke Makino*’, Hayato Tsuzuki*' and Tatsuo Sweda™"

ABSTRACT

Most of Japanese young plantation forests have reached an age when thinning is needed, but they have not yet
been cut, and stand density is often too high. An economical method is needed for selecting stands that should be

cut. We are developing a method of stand density estimation using aerial photography. In previous work, we devised
a method for high resolution color aerial-photographs. It divides images into a series of color bands, and estimates
stand densities by the brightness in a combination of different band images. Ground truthing is needed to improve
precision. In our earlier work, we used a set of 22 plots for ground truthing. Here, we present ground truthing of
mono-color aerial photographs obtained for a growing stock investigation project in Ehime prefecture, Japan. The
project is to estimate the CO. sink potential for all forests in the prefecture. Vegetation profiles are measured by
airborne laser altimetry assisted by a consecutive series of ground truth surveys. Performance of mono-color aerial
photography method was rather poor, indicating that manual contrast adjustment should be improved.

Keywords: aerial photography, airborne laser altimetry, ground truth survey, plantation forests, stand density

INTRODUCTION

The majority of young Japanese plantation forests were
planted 40-50 years ago and are reaching an age when thinning
is required. Much of these forests have not yet been thinned
and stand densities are too high. For the forestry industry, it
would be highly advantageous to have an economical method
for locating within the vast plantation tracts those dense stands
that need immediate thinning. Earlier, we (Gotou et al., 2006)
developed a technique using high resolution color aerial
photography to estimate stand density in young plantation
forests. The method divides images into a series of color
channels, and estimates stand densities from a combination of
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*! Graduate school of Agriculture, Kochi University,
B200 Monobe, Nankoku 783-8502, Japan
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modified color channel images. In the development stage,
ground truthing within the tree stands is required to improve
precision. The present paper describes the method and results
of our previous work (Gotou et al., 2006). We also tested the
methodology using mono-color aerial photographs of normal
resolution, which are less expensive, but contain less
information than color and high-resolution photographs. The
ground truth data we wused were obtained from an
investigation for a growing stock investigation to assess the
CO. sink potential of all forests in Ehime Prefecture, Japan.
The project produces forest vegetation profiles measured by
airborne laser altimetry augmented with a consecutive series
of ground truth surveys (TSUZUKI et al., 2006b) to derive forest
leaf area indices and ground stocks (KUSAKABE et al., 2000 ;
2006; Tsuzukl et al., 2006a). Airborne laser altimetry data is
used in attempts to estimate precise stand information such as
height and density of trees (e.g. HiraTA, 2005a and 2005b),
often for limited forest areas. Stand density estimation by
aerial photography is less precise than that with airborne laser
altimetry, but is less expensive and applicable to larger areas.
Here, we explore the possibility of applying a less expensive
method to estimate stand density in larger areas by using
aerial photography. We also report on data obtained from
airborne laser altimetry.
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Fig. 1 Locations of aerial photography. “A”, “B”, “C”, and “D”
are labels in Table 2
Map image is from Wikipedia (http://ja.wikipedia.org/)

MATERIALS AND METHODS

Stand Density Estimation by Color-aerial
(methodology developed in our previous study)

Photography

Target Stands

The target stands for our earlier work (GoTou et al., 2006)
were selected from a series of municipal forests in the vicinity
of Taishou (a town recently subsumed into the municipality of
Shimanto), located in the mid-western portion of Shikoku
Island, which is in the western part of Kochi Prefecture, Japan
(Fig. 1). All of the selected stands are plantations of Japanese
cedar (Cryptomeria japonica) or Japanese cypress (Chamaecy-
paris obtusa). The color aerial photographs covering the stands
were obtained from the municipal office. The images were
taken in 2000 at an altitude 2,500m to investigate land use
within Taishou. The altitude was lower than usual, so that
image resolution was excellent.

Modification of Digitized Images

The color photographs of the target stands were scanned
at 720dpi. The digital files were resolved into eight channels of
color-separated images using Adbe Photoshop™. There are
three color separation systems: CMYK, RGB, and Lab. CMYK
consists of four color-channel images: cyan, magenta, yellow,
and black. There are three color-channel images in the RGB
system, viz. red, green, and blue. The Lab system also has
three color-channel images, viz. brightness (L), magenta from
green (a), and yellow from blue (b). Our methodology uses
only the brightness channel image from the Lab system. In
summary, eight channels of images are generated from single

Kaneko et al.

digitized aerial photographs; CMYK-cyan, CMYK-magenta,
CMYK-yellow, CMYK-black, RGB-red, RGB-green, RGB-blue,
and Lab-brightness.

In some images, sections were completely bleached out
by sunlight. Contrast adjustment in Photoshop was used to
deal with over-exposed sections of each color-channel image.
Concurrently, we applied Photoshop’s edge effect procedure
for each image. These image enhancement methods allow for
more accurate estimates of tree stand density.

Each tree crown has sunlit and shaded sides. On brightly
illuminated mountain slopes, the distinction between sunlit
and shaded portions of tree crowns is clear in the images, but
this is not the case on shaded terrain. A variety of image
enhancement methodologies has been proposed to deal with
this difficulty on shaded slopes. For example, AwAyA and
NisHIZONO (2005) proposed a pattern decomposition approach
and applied it to Landsat TM data. We attempted to alleviate
the shade effect by adjusting image contrast so that shaded
sides of tree crowns were clearly distinguished from sunlit
sides. The edge enhancement procedure was applied so that
shaded and sunlit portions of canopy could be readily assigned
to individual tree crowns.

After these enhancements, the color-channel images were
converted to ortho-photographs with a ground resolution of
50cm. The conversion process used digital topographic maps
overlain with 50m grids through application of a geographical
correction procedure. In the final process of image conversion,
the brightness of the each contrast-adjusted, edge-effect
applied ortho-photograph image was measured on a digital
scale of 0 to 255 in proportion to the brightness of image
pixels. The digital scale of pixel brightness was used to
estimate tree stand density. The brightness scale was
summarized for each 10m X 10m grid unit using IrfanView™
free software, version 3.97. That is, the original 0.5m pixels
were averaged into 10m pixel.

Ground Truth Data

Plots (20m % 20m) for ground truthing were set out in the
forests of Taishou. There were 16 plots in total, half of
Japanese cedar and half of Japanese cypress. In each plot, the
number of the trees was counted. Precise positions of plots
were obtained by GPS.

An additional 6 plots were selected from aerial images in
which the outlines of individual tree crowns were readily
identified. In this process, images were modified to make
counting of individual trees easier. Three of these additional
plots contained Japanese cedar and three contained Japanese
cypress. Tree densities ranged from 350 to 2,600ha* and from
400 to 1,700ha" in stands of Japanese cedar and Japanese
cypress, respectively.



Estimation of Stand Density of Young Plantations using Digitized Aerial Photographs in Ehime Prefecture, Japan 143

Estimation of Stand Density with Modified Aerial Images

The brightness of each modified image was measured for
every 10m X 10m grid. The ground truth plots measured 20m
X 20m. Therefore, the brightness values of 10m X 10m grids
were averaged over the larger corresponding ground truth
plots. The number of averaged 10m x 10m grids for a plot was
more than four because the edge lines of the ground truth
plots were not parallel to these 10m x 10m grids. For a single
ground truth plot, eight averaged brightness values were
obtained from the eight channels of modified aerial images.
These averaged brightness values were used as independent
variables to estimate stand density as a dependent variable.

Simple linear regression analysis was carried out
separately for Japanese cedar and Japanese cypress plots (n =
11 for each group). We assumed that the relation between
stand density and brightness values fit an exponential function:

N=be“* (1)
where N represents the estimated stand density (trees/ha), x
denotes one of the brightness values, a and b are constants.
Table 1 lists the coefficients of determination for the analysis.
The coefficients for the RGB-green and CMYK-cyan channels
for Japanese cedar plots were higher than those of other color
channels; those of the RGB-green and the RGB-blue channels
were the highest for Japanese cypress plots.

For more efficient multiple
analysis was carried out with a combination of brightness
variables from two color channels. Prior to the multiple
regression analysis, we examined internal correlation between
the brightness values of eight color channels. For the Japanese
cedar plots, there were two combinations of color channels for
which there was no significant correlation (p > 0.01): a) the
combination of CMYK-yellow and Lab-brightness (R = 0.504),
and b) the combination of CMYK-yellow and RGB-red (R =
0.600). For the Japanese cypress plots, two combinations had
low internal correlation: a) the combination of CMYK-yellow
and CMYK-cyan (R = 0.569), and b) CMYK-yellow and CMYK-
magenta (R = 0.596). In summary, only CMYK-yellow had no
significant (p > 0.05) internal correlation with the other seven
color channels for both Japanese cedar and Japanese cypress
plots.

Multiple regression analysis was carried out to examine
the relationship between CMYK-yellow and the other seven
color channels. For the Japanese cedar plots, the coefficient of
determination (R?) for the multiple regression using an
independent variable combination of CMYK-yellow (Y) and

estimation, regression

Lab-brightness (Lab) was higher than all R* values for single
regressions. However, the coefficients of determination for
multiple regressions including other independent variable
combinations were lower than those of single regressions. For
the Japanese cypress plots, there was no combination of color
channels that had higher coefficients of determination than
single regressions. Thus, a single regression with color
channel RGB-blue (B) was the most efficient for estimation of
stand density in Japanese cypress plots.

The following formulae were the most efficient for stand
density estimation using the modified color channel images.

Japanese cedar N =52.61 ¢ 0013 Y+001Lab (D)

Japanese cypress N =11681 ¢ 20522 3)
where Y, Lab, and B denote the brightness values (0 - 255) of
CMYK-yellow, Lab-brightness, and RGB-blue, respectively.
Adjusted-R® values (adjusted coefficient of determination; ZAR,
1999) are 0.888 (1 = 11) and 0.830 (n = 11) for formulae (2) and
(3), respectively.

Applying the Stand Density Estimation Method to a Set of Data
with Mono-color Images

Target Stands and Field Investigation

We applied the stand density estimation methodology and
the estimation formulae to a set of ground truth data for a
growing forest stock investigation project. Airborne laser
altimetry was carried out in the fall of 2005. A series of ground
truth investigations is now underway, and will be applied to
200 plots spread across the prefecture. We selected 25 plots
from part of the completed data set. All plots are plantation
forest; 15 and 10 plots contain Japanese cedar and Japanese
cypress, respectively. These plots were located precisely
beneath a corresponding measurement
surveying.

In the field investigation, the size of the plots was variable.
Each plot was square with a side length set to approximate
average tree height. The average area of the selected plots was
0.0481 ha (range: 0.0152-0.0764 ha; SD = 0.0122 ha; n = 25) and
the average stand density was 1,523 trees/ha (range: 521-2,473
trees/ha; SD =494 trees/ha; n = 25). Table 2lists the correspond-
ing mono-color aerial images prepared for the following
analysis, and Fig. 1 shows the locations of the sites. The
images were taken at the usual altitude of 4,600 -4,700m,
giving lower resolution than those taken at lower altitude for
the previous study.

line for laser

Table 1 Coefficients of determination (R?) for each color channel

CMYK- CMYK- CMYK- CMYK- RGB- RGB- RGB- Lab-
cyan magenta yellow black red green blue brightness
Japanese cedar 0.8335 0.8160 0.6173 0.7933 0.8161 0.8452 0.8111 0.7458
Japanese cypress 0.6132 0.5733 0.5904 0.7593 0.7762 0.8320 0.8466 0.7075

J. For. Plann. 13:141-146(2008)
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Table 2 Details of sites for aerial photography

Tmage ifle Ishizuchi Ishizuchi Matsuyama Matsuyama Matsuyama
2-5 2-6 6-8 811 99
Altitude (m) 4,700 4,700 4,600 4,600 4,600
Year 2003 2003 2002 2002 2002
Photography by Forestry Agency Forestry Agency Geogr: e}ﬂ};iictﬂtsurvey Geog ré}ﬁ‘;iicti:lltgurvey Geogre}ﬂ}suiictallllte?urvey
Site label in Fig. 1 A A B C D

Conversion of Images

The images were digitized and modified as in the previous
analysis, except for color channels resolution, viz. scanned at
720dpi (Fig. 2(1)), processed with the Photoshop™ edge effect
detection (Fig. 2(2)), and converted to ortho-images (Fig.
2(3)). Appropriate parts of the modified images were then
extracted for measurement of brightness values (Fig. 2(4)).
We used gray scale photographs. Therefore only the
brightness value was used for the analysis. Binary scales of
pixels with a range of 0 to 255 were summarized for every 10m
x10m grid using IrfanView™. Summarized values were
averaged for corresponding plot areas. The averaged
brightness values were used as the brightness values of the
plots.

The relationships between stand density ground truth
data and the brightness values of the modified images were
examined by regression. Following the previous study, single
regression formula with an exponential fit was applied (there
was only one independent variable, the brightness value (B)).
Hence, the formula was of the form in equation (1), replacing x
with B. The regression used is equation (3), applied to
Japanese cypress data in the previous study.

(1) Aerial photographs digitized
at a resolution of 720dpi

(2) Edge-effect detection

(3) Conversion to ortho-
image

(4) Extracted area for
brightness measurement

Fig. 2 Procedure for modification of aerial photographic images
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RESULTS AND DISCUSSION

Fig. 3 illustrates the results for Japanese cedar and
Japanese cypress. When regression equation (1) was first
applied separately for Japanese cedar (n = 15) and Japanese
cypress (n = 10), the results were as follows: for Japanese
cedar, a = 580.02, b = 0.0064, adjusted-R* = 0.392, and p = 0.007;
for Japanese cypress, a = 665.94, b = 0.0059, adjusted-R* =
0.271, and p = 0.071. There was no significant difference
between constants a and b for the two tree species (p = 0.889
for a, and p = 0.574 for b). Therefore the following formula was
derived for the combined data (n = 25, adjusted-R?* = 0.413, p <
0.001):

N=590.95 ¢ 200042 4)

The solid curve in Fig. 3 is fitted to this formula. While
there are some outliers (2 - 3 for Japanese cedar and 4 - 5 for
Japanese cypress) the regression curve summarizes well the
relationship between stand density and brightness value. The
dashed curve in Fig. 3 is fitted to regression formula (3)
obtained with data from the previous study for Japanese
cypress in Taishou. The fitted line for formula (3) is quite
separate from that fitted to formula (4).

Because the photographs used in the present study were
taken at high altitude, parts of some were so dark that we
could not identify individual tree crowns, even after application
of the contrast adjustment process. The three observations
marked with small letters “a”, “b”, and “c” in Fig. 3 represent
these low quality images. The trend of the relationship
between stand density and brightness value would become
more similar to the fit of formula (3) were these three
observations to be excluded. This suggests that a form of
regression formula (3) would express the general trend
between stand density and brightness value and that there

3,000 5 O: Japanese cedar
@:Japanese cypress

3 2,500 °
D 0.0064B ¢
8 2000 { N=590.95¢ o
= ~ @
2 1,500 1
Z b .
S 1,000 A o> o
2 . .-~ Fitted regression for
% 500 4 2 O..-" ™\ Taishou cypress
N=116.81e %059
O T T T T T
0 50 100 150 200 250

Brightness value (B)

Fig. 3 Relationship between stand density and brightness
value
Symbols marked “a”, “b”, and “c” are for plots with
poor performance of contrast adjustment.

J. For. Plann. 13:141-146(2008)

would be common constant terms for the formula should more
data become available. Gotou (2007) found that the CMYK-
cyan channel is most effective to identify bamboo forests using
color aerial photographs. The reason why particular color
channels have better performance to identify tree density or to
classify forest types may be related to a reflection property of
leaves. Further investigation is necessary to explain the
reason.

There is a problem in the contrast adjustment process.
Most of the processes we used for image enhancement can be
performed objectively. All operators of Photoshop™ would
obtain the same result from the same data, but this is not so
for the contrast adjustment process. Image contrasts are
adjusted such that black and white parts are balanced. In our
previous study, we adjusted the contrast so that median values
of the contrast histogram in Photoshop™ would be 125.
However, in the present study, the median values were set to
100 in order to make dark parts of images as clear as possible.
A more objective criterion should be determined for the
contrast adjustment process.

CONCLUSIONS

We applied the stand density estimation method
developed for color and high resolution aerial photography to
a set of gray scale, low resolution images obtained by an
airborne laser altimetry project. The fitted regression formula
was statistically significant, but precision was lower than in the
earlier study. An improvement of contrast adjustment process
is essential for the development of the method. The stand
density estimation method was developed with rather small
number of data in a limited area. Further verification is
necessary using a sufficiently large number of testing data.

In the airborne laser altimetry project, a series of
vegetation profiles was produced, with corresponding ground
truth data. The line type laser can be used to estimate stand
density along the flight paths. Peaks in a vegetation profile
should correspond to individual trees. However, the density
estimate is defined as line density, that is, trees per line, not
trees per unit area. In the present study, stand density per unit
area was analyzed with modified aerial images coupled with
ground truthing. We are planning to investigate the possibility
of estimating area density from vegetation profiles.
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Development of the Forest Road Design Technique using LiDAR Data

of the Funyu Experimental Forest

Masashi Saito™', Kazuhiro Aruga*', Keigo Matsue*' and Toshiaki Tasaka*'

ABSTRACT

The forest road design process includes extensive field investigations and dynamic real-time decision-making
processes to create the best forest road design. These processes do require significant effort, and require the most
experienced personnel to affect the best outcome. However, such “front end efforts” pay huge dividends in
estimating construction costs, as well as benefits of the improved design in the out years in both utility of use and
maintenance of the constructed road. One of the major faults of past techniques was the low reproducibility of
geographical features, and the resultant impacts that subsequently were encountered during the design and
construction phases of the road projects. In this research, in order to improve the above-mentioned facts, the forest
road design technique was developed using the LiDAR (Light Detection and Ranging) data that presented more
accurate geographical features. The forest roads constructed before and after the LiDAR measurement were
surveyed. Elevations on the cross-sections of the forest road constructed before LiDAR measurement were
compared with those from 1m grid DEM made from LiDAR data and 10m grid DEM made from 1/5,000
topographic map. The mean square error between actual measurements and 1m grid DEM was 1.12m. On the
other hand, the mean square error between actual measurements and 10m grid DEM was 6.02m. Earthwork-
volumes estimated using the actual measurement of the forest road constructed after LIDAR measurement and by
the program using 1m grid DEM were 3,596.48m* and 3,641.51m* respectively, while the earthwork volume using
10m grid DEM was 10,637.6m”. Ground surfaces produced by LiDAR data represented actual ground surfaces
accurately and the results of the forest road design using LiDAR data were similar to the actual forest road. The
goal of the efforts demonstrated that using LIDAR enhanced the opportunities for planners to examine alternative

designs to improve ease of design, cost of construction, and maintainability.

Keywords: LiDAR data, forest road design, earthwork-volume, Funyu experimental forest, cost comparison.

INTRODUCTION

The forest road design process includes extensive field
investigations and dynamic decision-making processes to
create the best forest road design. While those processes are
labor intensive and require the most experienced engineering
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and surveying staff, they also represent the key efforts that
must be implemented in order to have a successful, cost-
effective project. A variety of forest road design supporting
techniques to reduce the workload of the forest road design
have been developed using DEM (Digital Elevation Model),
GPS (Global Positioning System), and similar techniques
(KoBavasH, 1984). These techniques have, however, demon-
strated lack of accuracy because of the low reproducibility of
geographical features. In order to improve the above-
mentioned facts, ARUGA et al. (2006) developed the forest road
design technique using the LiIDAR (Light Detection And
Ranging) data that demonstrated a significant improvement in
representing relatively accurate geographical features (KaTo,
2004). However, the comparison with the field investigation
has not been done. In this research, the 1m grid DEM
generated from the LiDAR data was applied to the program
and the results by the program were compared with the field
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investigation measurements.
THE ACCURACY VERIFICATION OF THE LIDAR DATA
Materials and Method

The study site (Fig. 1) is the Funyu experimental forest at
latitude 36 degrees 46 minutes north, longitude 139 degrees
49 minutes east and elevations between 300m and 550m. The
average slope of the study site is about 28 degrees. The forest
road is along the ridge and the vegetation around it is a mixed
forest composed of pine, oak, azalea and so on. The length of
the forest road is about 1,300m. The LIDAR measurement was
conducted by a helicopter on October 21, 2003 (Table 1). The
field investigation was done in November 2005.

To verify the accuracy of the LIDAR data, the forest road

Funyu
experimental
forest map

Region of
this research

A range of |

N 36° 46 257
,,,,,,,,, _E 139° 46” 157
The road constructed
-=- before the LiDAR
measurement

The road constructed
— after the LiDAR
measurement

—wcwewe | KM

Fig. 1 A range of LiDAR data and region of this research

Table 1 Specification of the LIDAR measurement

Item Specification
Target flight hight above ground 500m
Target flight hight speed 25m/s
Measurement density 8.82 points/m*
System ALTM1225
Laser wave length 1.064pm
Laser pulse frequency 25,000Hz
Scan frequency 27Hz
Scan angle 24°
Return mode First and Last
Laser beam divergence 0.2, 1.0 mrad

Saito et al.

constructed before and after the LiDAR measurement was
surveyed. First, the traverse survey of the route was
conducted on the forest road from GPS control points and its
closing error was 1/3,015. Then, the cross-sections were
surveyed from the traverse survey points at intervals of 10m.
Nine cross-sections were surveyed on the forest road
constructed before the LIDAR measurement and twenty cross-
sections were surveyed on the forest road constructed after
the LiDAR measurement. The elevation corresponding to each
survey point was determined with the 1m grid DEM generated
from the LiDAR data using the bilinear interpolation. Then,
those elevations were compared with the elevations obtained
from the cross-section survey. In addition, elevations were
determined with the 10m grid DEM generated from the
1/5,000 topographic map as one of conventional DEMs.

Result

The comparison of elevations between survey results and
DEMs was conducted with all of the 90 points on the forest
road constructed before LIDAR measurement and 127 points
of the ground surface on the forest road constructed after
LiDAR measurement. Fig. 2 is an example of the cross-section
on the forest road constructed before LiDAR measurement.
The natural ground surfaces before the forest road
construction can be shown with LiDAR data in Fig. 3. The
points of the road surface and the cut slope on the forest road
constructed after LIDAR measurement were excluded from
the comparison of elevations because elevations of those
points were changed after LIDAR measurement (Fig. 3).

Fig. 4 shows the frequency distribution of the differences
between elevations from survey results and DEMs. The root
mean square error of elevations at the total 217 points between
survey results and 1m grid DEM was 1.12m while the root
mean square error of the 90 points on the forest road
constructed before LIDAR measurement was 1.04m and that of
127 points of the ground surface on the forest road
constructed after LiDAR measurement was 1.35m. On the
other hand, the root mean square error of elevations between
survey results and 10m grid DEM was 6.02m.

Fig. 5 shows the comparison of forest road profiles. The
forest road profile from 1m grid DEM represents the actual
profile of the forest road constructed before the LiDAR
measurement and keeps almost constant differences from the
actual profile of the forest road constructed after the LiDAR
measurement. On the other hand, Fig. 5 shows the big
difference between the actual profile and that from 10m grid
DEM. It was clarified that the error was greatly reduced using
1m grid DEM generated from the LIDAR data compared with
using 10m grid DEM.

However, the greatest difference between open air points
and points in the forest occurred even though 1m grid DEM
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Fig. 6 Comparisons between open air points and points in the forest

was used (Fig. 6). The root mean square error of 20 open air
points on the forest road constructed before LIDAR
measurement was 0.33m. On the other hand, the root mean
square error of 70 points in the forest along the forest road
constructed before LIDAR measurement was 1.50m.

VERIFICATION OF THE FOREST ROAD DESIGN
TECHNIQUE USING THE LIDAR DATA

Forest Road Design Method

The coordinate and the road height of each survey point
on the forest road at intervals of 10m were provided to the

program, which connected each point by cubic spline function
as the forest road route (TASAKA et al. 1996). The cubic spline
function is the following equation.

P(t) =A+ Bt + Ct*+ Dt 1)

P(#) is a plane vector in which x(f) and y(¢) are elements.
The range of the parameter ¢ is within the distance between
the cross-sections. Coefficients A, B, C, and D of the spline
curve are determined by giving positional vectors P,, P,,, and
tangent vectors P’,, and P’.., at both ends of each segment.

A=P, )
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B=P, 3)
3(Pk+l_Pk) 2P’ P;”
T e e 4
7, ot @
2 k_Pk+l ; Pyﬂ
p=2Bu) B, P )
e L8 s

When positional vectors, the first derivatives, and the
second derivatives are continuous at the connected points, the
cubic spline function curvatures are approximately continuous.
The condition that the second derivative is continuous is
expressed by the following equation.

tk‘ZP’k+ 2(l‘lzvl-’— tk*Q)PYk*lJr tk*lP,kH!

= %{ﬁu(ﬂ:q— kal) + t:'Z(Pk*l_ Pk)} (6)
k+1 k+2

Not only positional vector P, but also tangent vectors P’
and P’, at both ends of the cubic spline curve are required to
calculate unknown tangent vectors P’,,. The spline function is
assumed to be under the free end condition because the
curvature of the forest road path at the beginning and end
points are 0. This condition is expressed by the following
equation.

Py _8@-—F)
Pi="5"=""4, @)
P, o= 3B P ©

Coefficients A, B, C, and D of the cubic spline function are
calculated and the spline function is determined from these
conditions 6, 7, and 8 (Fig. 7).

In order to estimate the earthwork-volumes of the forest
road designed by the program accurately, each segment
between each survey point was interpolated at an interval of
1m. hx(t) and hy(f) which are elements of an unit vector H(f)
normal to an cubic spline function at an interpolated point are
determined with x’(f) and y'(f) which are elements of an
tangent vector P’(f) (Fig. 8).

he) = cos(arctan(— ;8 )) ©
hy (£) = sin (arctan(— zgg )) (10)

Each coordinate on the normal line to the cubic spline
curve was determined within 15m of both sides of the cubic
spline curve at an interval of 1 m based on the equations 9 and
10. Then, an elevation of each coordinate was calculated from
the DEMs using the bilinear interpolation as the cross-section
of the ground profiles (Fig. 9).

J. For. Plann. 13:147-156 (2008)
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6: Determination of intersection points between cut

slopes and ground slopes using average cut slope
angles of survey results within the sections

4: Determination
of heights of a
forest road center

3¢ Determination of
inclinations of sections
between the coordinates

®

5: Determination of points on both sides of
roads using travel way width (3.5m)

1: Determination of coordinates on cross-sections

2: Determination of elevations of the f
coordinates as the ground profiles i

Fig. 9 The forest road design procedure

Calculation Method of Earthwork Volumes

The earthwork volumes of forest roads designed by the
program were compared with those of the actual forest road
constructed after the LIDAR measurement. First, in order to
calculate the earthwork volumes of the actual forest road, the
cut and fill areas of the cross-sections were calculated using
original ground slopes and forest road templates. In this study,
the LiDAR data was assumed to be original ground slopes and
survey data was assumed to be forest road templates. Then,
earthwork-volumes V' (m®) were calculated by the average end-
area method. The average end-area method is expressed by
the following equation.

v==14+a4.) an

A; and A,,, are cross-sectional areas and d is the distance
between the cross-sections.

The earthwork volumes of the forest road designed by the
program were calculated using the following procedures (Fig.
9.

1: Determination of coordinates on cross-sections.

2: Determination of elevations of the coordinates as the

ground profiles.

3: Determination of inclinations of sections between the
coordinates.

4: Determination of heights of a forest road center line.

5: Determination of points on both sides of roads using
travel way width (3.5m).

6: Determination of intersection points between cut slopes
and ground slopes, using average cut slope angles of
survey results within the sections.

7: Calculation of areas enclosed between ground profiles
and road templates as cross-sectional areas.

8: Calculation of earthwork-volumes from the cross-
sectional areas using the average end-area method
(the equation 11).

Calculation Method of Construction Costs

To compare the construction cost from the amount of the
calculated earthwork volume, an assumed man hours/volume
handled was used. It was assumed that a bucket excavator was
used for cutting, a bulldozer was used for filling and a dump
truck was used for transportation. Each work efficiency was
determined as follows (ANON. 2002):

1) Workload for cutting by a bucket excavator an hour
(m?*/h) is calculated by the following equation.

o= 60q, kfE

C (12)

Here, q,: capacity of a bucket (0.6m?), k: coefficient of a
bucket (0.8), f: bucket conversion coefficient (normal soil :
1/1.45), E: working efficiency (0.8), C,: cycle time (normal soil

. 32 seconds). From the equation 12, the amount of workload
an hour was 29.73m?/h.
2) Workload for smoothing by a bulldozer (11 t) an hour @
(m?*/h) is calculated by the following equation:

@ =10E (11D + 8) (13)

Here, E: working efficiency (0.6), D: depth of finishing
(0.3m). From the equation 13, the amount of workload an hour
was 67.8m’/h. Moreover, workload for compacting by a
bulldozer (11t) an hour @ (m*/h) is calculated by the following
equation.

_ VWDE
Q= N (14)
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Here, V: compacting speed (3,500m/h), W: effective width
of compacting a time (0.7m), N: the number of compacting (5
times). From the equation 14, the amount of workload an
hour was 88.2m*/h.
3) Earthwork volume of transportation by a dump truck an
hour V, (m*/h) is calculated by the following equation.

60

V.= C. qE 15)

_w 16
gi= (16)
C,=BL+a 17)

Here, g: payload a truck (m?), C,: cycle time, E: working
efficiency (0.9), W; maximum capacity (4t), w; unit weight of
ground (sandy soil: 1.8t/m?), B; coefficient by transportation
situation (4.8), L; one way transportation distance (2km), «;
loading and other working time (11 minutes for a 0.6-m?
bucket excavator). Earthwork volume of transportation an
hour was 5.7m*/h.
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Each working time was calculated using the calculated
earthwork-volume and each working efficiency mentioned
above. Then, each working cost is calculated using each
working time and unit cost for each machine (Table 2-4).

Results

The earthwork volume of the survey result was
3,5996.48m’ while the earthwork volume of the forest road
designed by the program was 3,641.51m* Fig. 10 shows
cumulative earthwork volumes. The error of earthwork
volumes with 1m grid DEM was 2.67% compared with those of
actual forest road. On the other hand, the error with 10m grid
DEM was 199% (Fig. 10). Because the mesh size of 10m gird
DEM is much larger than that of 1m grid DEM, the root mean
square error of elevations between survey results and 10m
grid DEM was much worse than that between survey results
and 1m grid DEM. Subsequently, the error of earthwork
volumes with 10m grid DEM was much worse than that with
1m grid DEM.

Table 2 Driving Unit Price of a Bucket Excavator
(vehicle exhaust emission measures type)

Item Unit Unit Cost (yen) Total Cost (yen)
Driver 0.18 person 17300 3114
Diesel Oil 18L 72 1296
Machine Depreciation 1h 4300 4300
Total 1h 8710

Table 3 Driving Unit Price of a Bulldozer
(Vehicle exhaust emission measures type).

Item Unit Unit Cost (yen) Total Cost (ven)
Driver 0.19 person 17300 3287
Diesel Oil 14L 72 1008
Machine Depreciation 1h 5230 5230
Total 1h 9525

Table 4 Driving Unit Price of a Dump Truck

Item Unit Unit Cost (yen) Total Cost (yen)
Driver 0.16person 14500 2320
Diesel Oil 6.8L 72 490
Machine Depreciation 1h 4300 4300
Tire Tread wear Cost 1h 196 196
Total 1h 7306

J. For. Plann. 13:147-156 (2008)
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Fig. 12 Example of a turnout at the part (1) in Fig. 11

Fig. 11 shows the comparison result of the earthwork
volumes every 10m by each method. The error occurred
according to the sections such as (1) a turnout and (2) curve
parts. The turnout is not assumed to be constructed in the
program while the turnout is located at part (1) in Fig. 11 on
the actual forest road (Fig. 12). Therefore, a big gap of the
earthwork volumes occurred in this section. This will be

improved in the future study.

Another big gap occurred at the top of the curves, the
part (2) in Fig. 11 because each section was surveyed as a
straight line while the program interpolated each section using
a cubic spline function (Fig. 8). Moreover, the average end-
area method was commonly used for straight roadways, not
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curved roadways. As the program interpolated each section at
an interval of 1Im (a very short interval), it calculated
earthwork volumes relatively accurately even using the
average end-area method (ARUGA et al. 2005), On the other
hand, earthwork volumes from survey data was not calculated
accurately due to their intervals of 10m.

As for part (3) in Fig. 11, because the cross-section
designed by the program was also corresponding to the
survey results well at the straight-line part, the differences of
the earthwork volumes were small.

DISCUSSIONS

Since this research site was relatively steep, the forest
road was constructed with full bench (Fig. 3 or 12). However,
earthwork volumes and costs could be reduced by construct-
ing forest roads while balancing cut and fill volumes on the
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each cross-sections (zero-line method). In this section, working
times and costs between the full-benched forest road and the
forest road designed by the zero-line method were examined.
As a result of the forest road designed by the zero-line method,
the cut volume was +662.35m?, the fill volume was -994.38m?,
and the cumulative earthwork volume was -282.03m* (Fig. 13).
The zero-line method significantly reduced required earth-
work volumes.

Table 5 shows the working times estimated from the
earthwork volumes. The working time for constructing the
forest road designed by the zeroline method was also
decreased greatly compared with that of the full-benched
forest road because the earthwork-volumes became smaller.
Table 6 displays the construction costs estimated from the
calculated working times. From Table 6, it was clear that the
zero-line method significantly decreased construction costs.

4000
& 3500 — /
& ——full bench /
2 3000 -
TE 2500 —— zero—line
£ U method /
£ I
z
+ 1500 //
©
[}
1000
2 /
& 500
g 0 Y i, L
-500 50 100 \—Tso\-—zmo

cumulative distance(m)

Fig. 13 Comparison of cumulative earthwork volumes

Table 5 Working times estimated from the earthwork-volumes

J. For. Plann. 13:147-156 (2008)

Volume (m®) Working time (hour)
Cut Fill Cut Fill Transport Total
Full Bench 3596.48 0 120.72 0 630.48 751.19
Zero-Line Method 662.35 944.38 22.23 24.64 49.07 95.94
Table 6 Comparison of construction costs
Full Bench (yen) Zero-Line Method (yen)

Cut 1,051,429 193,640

Fill 0 234,661

Transport 2,550,920 198,525

Total 3,602,349 626,826

Cost per Meter 18,012 3,134 |
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CONCLUSIONS

Ground surfaces produced by LiDAR data represented
actual ground surfaces accurately and the results of the forest
road design using LiDAR data were similar to the actual forest
road as-builts. With the high reliability of the LiDAR data,
various alternative proposals could be examined efficiently
because of reduced workload requirements of each alternative
proposal examination.

Various organizations have been measuring the LiDAR on
the forested areas, and 5m grid DEM made by the LiDAR
measurement begins to be offered in the urban region. The
forest road design program developed and verified in this
study could be more useful tool as the LIDAR measurement is
more commonly used in the future.

However, LiDAR is not infallible. An error was discovered
in the LiDAR data sets. The root mean square error in open
sky was 0.33m and the root mean square error was 1.50m in
the forest. Tree canopies and floor vegetations might interrupt
the laser. Future study will develop the technique to correct

Saito et al.

and compensate for this phenomenon to create more accurate
ground surface from the raw LiDAR data.
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Estimation of Tree Height and Forest Biomass from GLAS Data

G. Sun*"?, K.J. Ranson*?®, J. Masek™®, Z. Guo™*, Y. Pang™', A. Fu** and D. Wang™*

ABSTRACT

The Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat) is the
first spaceborne lidar instrument for routine global observation of the Earth. GLAS records a vertical profile of the
returned laser energy from a footprint of approximate 70m diameter. The GLAS waveform data (GLA0O1) and the
Land/Canopy Elevation product (GLA14) provide information on vegetation spatial structure. In this study the use
of the GLAS data for forest structural parameters retrieval was evaluated using airborne LVIS (NASA’'s Laser
Vegetation Imaging Sensor) data and field measurements. The tree height indices from airborne large-footprint
lidars such as LVIS have been successfully used for estimation of forest structural parameters in many studies. The
tree height indices, based on lidar return energy quartiles from GLAS data were compared to similar tree height
indices derived from LVIS data within the GLAS footprints. The results show that the tree height indices derived
from the GLAS and LVIS waveforms were highly correlated. Our analysis showed that tree height and biomass
obtained from field measurements can be predicted from GLAS data. Comparisons of the near-repeat-pass GLAS
data acquired in Fall of 2003 (L2A), Fall of 2004 (L3A), and early Summer of 2005 (L3C) and 2006 (L3F) show that
the surface elevations from GLAS were consistent. When the mean distance between corresponding points from
two 4.5km orbits (260 GLAS shots from L2A and L3F) was 82.6m, the R* of the elevations from these two orbits was
0.997, with a RMSE of 4.1m. The top tree heights from the near-repeat-pass GLAS orbits show significant

differences, probably due to the heterogeneity of the forests.

Keywords: LiDAR, forests, tree height, biomass, GLAS

INTRODUCTION

Vegetation spatial structure must be known to adequately
monitor and model the carbon cycle and forest ecosystem
dynamics. Most remote sensing systems, although providing
images of the horizontal distribution of canopies (e.g., Landsat,
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MODIS), do not provide direct information on the vertical
distribution of canopy elements. The lidar waveform signature
from a large-footprint airborne lidar instrument, such as the
Scanning Lidar Imager of Canopies by Echo Recovery
(SLICER) (HARDING et al., 2001) and the Laser Vegetation
Imaging Sensor (LVIS) (BIAIR et al., 1999) have been
successfully used to estimate tree heights and above-ground
forest biomass (LEFSKY et al., 1999; DUBAYAH and DRAKE, 2000;
WEISHAMPEL et al., 2000; DRAKE et al., 2002). Using LVIS data,
DRAKE et al. (2003) found that lidar metrics, especially the
height of median energy (HOME), were strongly correlated
with mean stem diameter, basal area and above ground
biomass (AGBM). Their studies found that these relationships
differed between regions and that environmental factors have
an important influence on these relationships. HYDE ef al.
(2005) found good agreement between field and lidar
measurements of height, tree cover, and biomass at the
footprint level, and canopy height and biomass at the stand
level. Differences between field and lidar measurements are
mainly attributable to the spatial configuration of canopy
elements. The studies using SLICER data by LEFSKY et al.
(2005a), however, found that the relationships between many
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stand structure indices and lidar measured canopy structure
have generality at the regional scale. LEFSKY ef al. (2002)
studied three biomes and found that a single equation explains
major variance in above-ground biomass and shows no
statistically significant bias in its predictions for any individual
site. The differences noted in these studies may be the result
of different data characteristics.

The Geoscience Laser Altimeter System (GLAS) instrument
aboard the Ice, Cloud, and land Elevation (ICESat) satellite,
launched on 12 January 2003. GLAS is the first lidar
instrument designed for continuous global observation of the
Earth (ZwALLy et al., 2002). Researchers have started using
GLAS data for forest studies (RANSON et al., 2004a, b;
CARABAJAL and HARDING, 2005; LEFSKY et al., 2005b).
Measurements derived from lidar waveforms were used to
characterize the canopy vertical structure. These measure-
ments include the lowest and highest detectable returns
(above a threshold noise level), and the heights within the
canopy where 25, 50, 75 and 100% waveform energy were
received (BILAIR et al., 1999). The vertical distribution of plant
materials, along with the gap distribution, determines the
proportion of energy scattered at a given height. The use of
GLAS data for deriving accurate forest parameters for regional
studies requires full understanding of their characteristics.
The canopy height metrics derived from GLAS data were
compared with those derived from LVIS waveforms within the
GLAS footprint. The tree height and biomass within GLAS
footprints measured in the field were used to test the
prediction capability of the GLAS data. The results show some
of the potentials and problems of the GLAS data for vegetation
structure studies.

STUDY SITE AND DATA
Study Site

The study sites include a forested area within the US
Department of Agriculture’s Beltsville Agricultural Research
Center (BARC), north of the NASA's Goddard Space Flight
Center (GSFC) in Maryland, USA (39°N, 76°50'W), and forests
around Tahe (52.5° N, 125° E) and Changbai Mountain (42.5°
N, 128° E) areas in Northern China. LVIS data over BARC
were used to compare with the GLAS data.

More than 80 GLAS footprints were measured in
Northern China. After the center of GLAS footprint was
located using GPS, four sampling plots with a radius of 7.5
meters (center, 22.5m to north, south-east, and south-west
from center) were located within the footprint. Diameter
at breast height (DBH) and tree height of all trees with
DBH > 5cm were measured. Dominant trees within a ~100m
circle but not inside these sampling plots were also measured.
These measurements were later used to estimate the height of
dominant trees and above-ground biomass in the GLAS
footprints.
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O[T T
250 | .
$. i
L g SignalBeginning ]
o 200 ... HI00 ]
.E I fes e e ? "' .“ .- Ve e B
@ beote | 1HS
g L :
5 150 oMo e e e e
- Ground Peak "‘,',f. . IHZJ - 4
[ ‘g-SIgna.lEnd
100 | i -
sol v oy
0 20 40 60 80

Lidar Return

Fig. 1 A typical LVIS waveform attributes and locations of
energy quartiles labeled

LVIS Data

NASA’s Laser Vegetation Imaging Sensor (LVIS) is an
airborne laser altimeter system designed, developed and
operated by the Laser Remote Sensing Laboratory at Goddard
Space Flight Center. In August 14, 2003, LVIS obtained sub-
canopy and canopy-top topography data as well as canopy
vertical structure information for several forested sites in the
US using a footprint size of 10m (BILAIR ef al., 2004). Fig. 1.
shows a typical LVIS waveform and provides the definitions of
energy height indices. H25 is the 25% quartile height and is
calculated by subtracting the ground elevation from the
elevation where 25% of the returned energy occurs. H100 is
the canopy top height. These quartile heights are a relatively
direct measure of the vertical profile of canopy components. In
addition, waveform measures are a function of the complex
and variable 3-D structure of canopy components and their
spectral properties including the spectral properties of the
ground/litter. The gap distribution within the canopy largely
determines the amount of scattered energy at a given height
that returns to the sensor.

GLAS Data

GLAS carries three lasers. Laser 1 started firing on
February 20, 2003 and failed only 37 days later. Anomaly
studies revealed systematic problems that reduced the lifetime
of the laser system. Consequently, the GLAS mission started
to operate with a 91-day repeat orbit (with a 33 day sub-cycle)
over selected times of the year to maximize coverage of ice-
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Fig. 2 A GLAS waveform from the study area: Dots-GLAS
waveform data from GLAO1, solid curves-Gaussian
peaks used to fit the waveform from GLA14
Top tree height is the distance from signal beginning
to the first Gaussian peak, i.e. the ground peak.

covered areas. From early October to November 19, 2003,
GLAS completed the first 33-day sub-cycle using laser 2 (L2A).
Since then, more 33-day sub-cycle data sets have been
acquired in Feb-March, May-June and October-November
periods each year. The use of laser 3 was initiated in October,
2004 (I.3A), and continued in February-March (L.3B), May-
June (L3C), October-November (I.3D) in 2005, and Feb-March
(L3E), May-June (L3F) in 2006. These 33-day sub-cycles are
nearly repeat-passes of the October-November 2003 data
(L2A), providing a capability for seasonal and inter-annual
change monitoring. GLAS data from L2A, L3A, L3C, L3D and
L3F were used in this study.

GLAS uses 1064-nm laser pulses and records the returned
laser energy from an ellipsoidal footprint. The footprint
diameter is about 65m, but its size and ellipticity have varied
through the course of the mission (SCHUTZ et al., 2005; ABSHIRE
et al., 2005). GLAO1 products provide the waveforms for each
laser shot, but only an estimated geolocation for all 40 shots
acquired within 1 second. For the land surfaces, the waveform
has 544 bins with a bin size of 1-nsec or 15cm. The bin size
from bin 1 to 151 has been changed to 60cm starting from
acquisition L3A, so the total waveform length increased from
81.6m to about 150m. The product GLA14 (Land/Canopy
Elevation) doesn’t contain the waveform, but
parameters derived from the waveform. The GLAS waveforms
were smoothed using filters, and the signal beginning and end
were identified by a noise threshold. The smoothed waveform

various
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was initially fitted using many Gaussian peaks at different
heights, and then the peaks were reduced to six by an iterative
process (ZWALLY et al., 2002; HARDING and CARABAJAL. 2005).
GLAS14 data provides the surface elevation and the laser
range offsets for the signal beginning and end, the location,
amplitude, and width of the six Gaussian peaks. Fig. 2 shows a
GLAS waveform from our study area with the Gaussian peaks
(HOFTON et al., 2000) and other parameters extracted from
GLA14 data products. Assuming that the last peak near the
ground is from surface reflection, the distance from the signal
beginning and this ground peak is the top canopy height
(referred to as H14). This works only for flat area, and
requires significant energy return from ground surface. For
cases with dense canopies, rough surfaces with slopes, the
elevation of the ground peak becomes questionable.

The GLAS L2A data had a range precision of <2.5cm and a
pointing determination accuracy better than 2 arcsec,
corresponding to a horizontal geolocation error of 5.8m
(ABSHIRE et al., 2005). According to CARABAJAL and HARDING
(2005), the horizontal geolocation error for L3A, Release 22
was 2.4m (mean) and 7.3m (standard deviation). For this
study, GLAS waveforms were extracted and processed to
estimate the energy quartile heights similar to those from
LVIS data products.

DATA PROCESSING METHOD
GLAS Data Processing

The GLA14 data were first retrieved along with the record
index, the serial number of the shot within the index (from 1
to 40), acquisition time, latitude, longitude, elevation, range
offsets of signal beginning, signal ending, waveform centroid,
and fitted Gaussian peaks. In the GLLAO1 data file, the 40 shots
received in one-second are assigned only one estimated
latitude and longitude. Using the record index and shot
number found in GLA14 data, the individual waveform was
extracted from GLAO1 data along with other parameters such
as estimated noise level, noise standard deviation, and
transmitted pulse waveform, which were used later in
waveform processing.

A method for calculating the heights of quartile waveform
energy from GLAS waveform was implemented. The waveform
was first filtered by a Gaussian filter with a width similar to the
transmitted laser pulse. The real width was estimated from the
waveform of transmitted pulse. It was about 12 ns, equivalent
to a vertical distance of 1.8m. The GLAO1 product gives the
estimated noise level, i.e. the mean and standard deviation of
background noise values in the waveform. For many cases, the
noise level before the signal beginning was lower than the
noise after the signal ending. Consequently, we estimated the
noise levels before the signal beginning and after the signal
ending from the original waveform separately using a method
based on the histogram. Using three standard deviations as a
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threshold above the noise level, the signal beginning and
ending were located. The total waveform energy was
calculated by summing all the return energy from signal
beginning to ending. Starting from the signal ending, the
position of the 25%, 50%, and 75% of energy were located by
comparing the accumulated energy with total energy. Since
the heights of these quartiles refer to the ground surface, not
the signal ending, the ground peak in the waveform needs to
be located. Searching backward from the signal ending, the
peaks can be found by comparing a bin’s value with those of
the two neighboring bins. If the first peak is too close to the
signal ending, i.e. the distance from signal ending to the peak
is less than the half width of the transmitted laser pulse, this
peak was discarded. The first significant peak found is the
ground peak. As terrain slope and surface roughness increase,
the ground peak of the waveform becomes wider and the
signal beginning moves upwards in a proportional manner.
The distance between the signal ending and the assumed
signal ending was used as an adjustment to the signal
beginning.

Extracting LVIS Data

The LVIS shots were dense enough to provide maps of
the canopy vertical structure. All LVIS shots, the centers of
which were within a circle of 60m diameters centered at each
GLAS footprint, were extracted from the LVIS ground
elevation (LGE) data, and the statistics of the quartile heights
(H25, H50, H75, and H100) were calculated. The height
indices derived from GLAS waveform and LVIS data were
compared. The linear correlation of two vectors was used to
evaluate their relationship.

Seasonal Effect on GLAS Data

The GLAS data from nearly repeat passes were compared.
The distances between corresponding footprints ranged from
a few tens of meters to a few hundreds of meters. The tree
height indices from GLAS data were compared to assess any
temporal differences between these GLAS overpasses.

RESULTS AND DISCUSSION

Comparisons of GLAS Height Indices with Averaged LVIS
Height Indices

The correlations between tree height indices derived
from LVIS and GLAS are shown in Table 1 for the GLAS data
of L2A (Oct 11, 2003) and L3C (June 9, 2005). It can be seen
that the linear correlation coefficient (K*) between the
averaged LVIS indices and indices derived from the GLAS
waveforms is significant for most cases. For both dates, the
correlations between averaged LVIS quartile heights and
GLAS quartile heights are high. For the GLAS data acquired
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Table 1 Correlations (R*) between the tree height indices
derived from GLAS waveforms and averaged LVIS
data within the GLAS footprint

L2A Height Indices From GLAS

LVIS wilen H14 H25 H50 | H75| H100
Mean H25 0.58| 0.42| 0.54| 0.77 0.82]| 0.62
Mean H50 0.61| 045 052| 0.77| 0.83| 0.65
Mean H75 0.63| 048] 048] 0.73| 0.82| 0.66
Mean H100 0.64| 049| 0.69| 048 0.79| 0.66
L3C wflen | H14| H25 H50| H75| H100
Mean H25 0.55| 0.32]| 0.60| 0.66 0.63| 0.54
Mean H50 059 035 059 0.66| 0.65| 0.58
Mean H75 0.61| 038 056 065 0.65| 0.60
Mean H100 0.64| 040 054| 0.64 0.64| 0.62

“Bolded numbers are correlations between the same quartile
energy heights from LVIS and GLAS.

on Oct 11, 2003, the GLAS H75 has the highest correlations
with the average quartile heights H50 (R*=0.83) and H75
(R*=0.82) from LVIS data.

In order to investigate the differences between the L2A
and L3C data in this site, the differences of the regression
equations: Hi"=AqAH%"™, where xx = 50, 75 and 100
between L2A and L3C were tested. T-tests were used to test
the difference in regression slopes, and F-tests were used to
test the difference in regression equations. The results show
that the only significant difference is between two regression
equations for H100, and all others have no significant
differences at 95% confidence level. Because on both dates of
Oct 11, 2003 and June 9, 2005, the canopy was fully leaved, the
GLAS data were consistent compared with the LVIS data.

Tree Height from GLAS and Field Measurement

Fig. 3 shows a comparison of maximum tree height
measured in the field and the estimation from GLAl4 data
using all 84 sampling points. The line in the figure is the 1:1
line. The correlation (#*) between the measured and GLAS-
estimated tree heights was 0.57, and residual standard error is
4.46m. Figures 4-6 are the comparisons of GLAS estimated
biomass with the field measurements. Fig. 4 used all 84 GLAS
footprint data in Tahe (64) and Changbai area (20). The forests
in Changbai Mountain area are mainly evergreen conifer trees,
while most trees in Tahe are deciduous trees (larch and
birch). Fig. 5 shows the results using data from Changbai (20)
and the GLAS data at Tahe acquired in late Fall (24). Fig. 6
shows the results using GLAS data (40) in Tahe acquired in
June. The solid lines in these figures are 1:1 lines. The R* and
Residual Standard Error are 0.68, 29.35 Mt/ha, 0.78, 30.58
Mt/ha, and 0.59, 24.56 Mt/ha for Fig. 4-6, respectively.
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Fig. 3 Top tree heights from field measurements and GLAS
estimation in Northern China
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Fig. 5 Comparisons of field biomass with the prediction from
GLAS indices using GLAS data in Changbai and the
GLAS data acquired in late Fall in Tahe area

Seasonal Changes and Forest Heterogeneity

Fig. 7 shows that the surface elevation measured by
GLAS on nearly repeated passes are highly consistent. These
data used were subsets of the L2A and L3F orbits, each with
260 GLAS footprints (about 4.5km long). The distances of
corresponding points range from 75.4m to 89.8 m with a mean
of 82.6m. The correlation between the surface elevation from
these two orbits was K?=0.997, with a RMSE of 4.1m. For the
top tree height H14, k*<0.51 and RMSE-4.62m. Figs. 8 and 9
show the comparisons of the top tree height measured by
GLAS on different dates. The mean distance between the two
orbits shown in Fig. 8 is 170.8m, the correlation between the
top tree height from these two orbits is R*=0.31, and
RMSE=6.06m. In this case, the correlation of elevation is
R*=0.81, and RMSE=30.29. The mean distance of the two orbits
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Fig. 4 Comparisons of field biomass with the prediction from
GLAS indices using all GLAS footprint data in
Changbai preserve forests and Tahe site
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Fig. 6 Comparisons of field biomass with the prediction from
GILAS indices using GLAS data acquired in early
summer in Tahe area

shown in Fig. 9 is 58.8m, the correlation between the top tree
height from these two orbits is R*=0.46, and RMSE=4.87m. The
correlation of elevation is R*=0.995, and RMSE=5.68m. These
results show that the ground surface elevation from the repeat-
pass GLAS data sets was consistent, i.e. the correlations of
elevation from two orbits were high. The correlations of top
tree heights were much lower, and RMSEs were high. The de-
correlation was determined by the distances between the two
orbits, which indicates that the difference of top tree heights
from two repeat-pass orbits is mainly caused by the horizontal
heterogeneity of the forest canopies. The different foliage
density in different seasons may be the other factor for the
height differences from near-repeat pass GLAS data, but
seems not significant. Further detailed studies are needed to
identify the major factors.
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Fig. 7 Surface elevation from two GLAS orbits: data
acquired by L3F on May 28, 2006 (square
symbol) and by L2A on Oct 21, 2004 (plus sign)
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Fig. 8 Comparisons of tree heights from GLAS data acquired by L3C on May 28, 2005 (top) and
by L3A on Oct 11, 2004 (bottom)
The distance between these two GLAS orbits is about 170m. Mean tree height is 14.48m
and 11.90m for May 28, 2005 and Oct 11, 2004 data, respectively.
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Fig. 9 Comparisons of tree heights from GLAS data acquired by L3C on June 19, 2005 (top)

and by L3F on June 24, 2006 (bottom)

The distance between these two GLAS orbits is about 60m. Mean tree height is
17.75m and 18.22m for June 19, 2005 and June 24, 2006 data, respectively.

CONCLUSIONS

The Geoscience Laser Altimeter System (GLAS) is the
first lidar instrument for continuous global observation of the
Earth. It samples the earth surface every 175m along track
with an ellipsoid footprint of about 120m by 50m for laser 2,
and a circular footprint of about 65m for laser 3. In this study,
the airborne Laser Vegetation Imaging Sensor (LVIS) data was
used to as an independent check of the GLAS data.

Correlations between tree height indices derived from
LVIS and GLAS were relatively high (e.g., R*= 0.82 for LVIS
H75 and GLAS H75; and R*=0.83 for LVIS H50 and GLAS H75).
The results indicate that the vertical information in GLAS and
LVIS waveforms were similar on the scale of GLAS footprint
size. The quartile waveform energy heights H50 and H75
derived from GLAS and LVIS data showed higher correlations
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than H100. Because of these high correlations and the fact that
these height indices from airborne lidar data has been used for
forest biomass estimations, we believe that the GLAS data will
be useful for biomass sampling in regional to global scales,
given the limitations of geographical coverage and the large
footprint diameter.

The field measurements and data analysis showed that
GLAS data predicted the top tree height and stand biomass
well for the cases studied here. However, caution and further
study should be taken in terms of the effects of seasons of data
acquisition, the scale of the sample as well as terrain slope and
forest types on the derived forest structure measures.
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The Estimation of Wind Risk in Forests Stands using Airborne
Laser Scanning (ALS)

Juan Suarez™', Rafael Garcia™’, Barry Gardiner®' and Genevieve Patenaude**

ABSTRACT

Wind is the most important abiotic hazard for forestry in Britain. Most forests have been established in upland
areas in locations that are commonly affected by high winds and poor soil conditions. Strong winds cause
significant loss of timber every year in Great Britain and have profound effects in wood quality though increases in
the proportion of compressed wood, poor stem straightness, repeated loss of leaders and important alterations in
the relationship between height and diameter. ForestGALES (Geographical Analysis of the Losses and Effects of
Storms in Forestry) is a process-based model that provides a better understanding of the variability in the wind
forest climatology, an estimation of the critical wind speed to cause wind damage and the return period for that
damage to occur. At present, ForestGALES is currently being linked to ArcGIS and LiDAR data has been evaluated
to estimate the effects of stand structure in the probability of wind damage. To do so, the model has been adapted
to operate with tree lists generated by LiDAR. In this context, three canopy delineation algorithms have been tested
in connection to existing allometric relationships. TreeVAW (Popescu, 2006), TreesVIS (WEINACKER et al., 2004) and
ITC (GOUGEON, 2005). The results provided a valid method for evaluating the effects of stand variability on wind
damage and the effectiveness of Airborne Laser Scanning for monitoring forest structure and its effects on wind

stability.

Keywords: LiDAR, forestry, windthrow, tree canopy segmentation and tree dimensions.

INTRODUCTION

Wind is the most important abiotic hazard for forestry in
Britain. Most forests have been established in upland areas in
locations that are commonly affected by high winds and poor
soil conditions. Strong winds cause significant losses of trees
every year in Great Britain. In addition, the quality of the
timber is also affected by an increase in the proportion of
compressed wood, poor stem straightness, repeated loss of
leaders and important alterations in the relationship between
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height and diameter.

ForestGALES (Geographical Analysis of the Losses and
Effects of Storms in Forestry) is a process-based model that
provides a better understanding of the wind forest climatology,
an estimation of the critical wind speed at which wind damage
is caused and the return period for that damage to occur. The
use of a mechanistic model creates more flexibility for testing
different forest management scenarios such as the choice of
cultivation, thinning options, drainage improvements, the
impact of clearfellings and the creation of long term retentions
(GARDINER et al., 2004). At present, ForestGALES is being
integrated into the British Forest Enterprise corporate GIS
system.

Initial validation of the model, with data from wind tunnels
and field experiments (GARDINER et al., 2000), has shown its
sensitivity to silvicultural practices which alter the height-
spacing ratios, drainage maintenance, stem taper and distance
to new edges. These changes of stand conditions are
attributed to forest management (or the lack of it).

During field validation, a group of 177 plots 10x10m in
size and distributed across 6 monitoring areas in the UK, were
surveyed to collect the necessary parameters for running the
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model (tree height, diameters and spacing) and observed wind
damage. The results showed an overall performance around
48% in accuracy with a considerable amount of over predictions
(Table 1).

These results contrasted sharply with the better results
obtained in wind tunnel experiments. Part of the reason was
the excessive simplification of the input parameters that only
accepted mean stand conditions. A second validation of the
model used Montecarlo simulations to recreate normal stand
variability using the same datasets. This time the results
showed an increase in the performance of the model up to 70%
(SUAREZ et al., 2001). The better results were attributed to
more realistic stand characteristics that allowed variable
distributions of tree heights and diameters for each plot.

Following this principle, the model has been recently
adapted to operate with tree lists in order to map the effect of
variable stand conditions and to have an insight into the effect
of stand structure and, in particular, the spatial distribution of
different types of trees on the probability of wind damage. As
this information is difficult to measure in the field, airborne
laser scanning (ALS) data have been tested as a cost-effective
alternative to field data collection. However, the main problem
when working with ALS is how to convert point clouds of data
into something meaningful, where information about
individual trees can be extracted.

Therefore, three canopy delineation algorithms have been
tried in connection to existing allometric relationships in order

Table 1 Metrics of performance of ForestGALES in the wind
monitoring areas.

%Damage  %NO-Damage  Total = Underpred. Overpred.
(Sensitivity)  (Specificity) ~ (Truth)  (False -ve) (False +ve)
0.88 0.32 0.48 0.12 0.68
~ y. 1p

Scotland: y
:.‘ -{& {" . ¢
247 :}"'\ > G b L

Suarez et al.

to extract the dimensional parameters to operate the model at
tree level: TreeVAW (Popescu, 2006), TreesVIS (WEINACKER et
al., 2004) and ITC (GOUGEON, 2005). This paper will explain in
detail the comparative results of each algorithm.

To summarise, the aims of this study are:

1. to carry out a comparative evaluation of 3 bespoke
algorithms for individual tree crown delineations ITC,
TreesVIS and TreeVAW,

2. to evaluate the most sensitive parameters for running
ForestGALES at tree level such as tree height and
diameter at breast height (DBH) using ALS;

3. to evaluate use of tree lists as an input dataset for
ForestGALES in order to make more accurate
predictions of wind damage than the ones generated
with stand information gathered in the field;

4. to determine the spatial location of the most
vulnerable trees in the forest in order to understand
the effect of stand structure on the likelihood of wind
damage and as an aid to future management plans.

FIELD METHODS

A study area was located around the Aberfoyle village (56°
10’ North, 4° 22° West) inside the Trossachs-Ben Lomond
National Park in the west coast of Scotland (Fig. 1).

ALS data were acquired in September 2002. The total area
surveyed was 17.5km? at a cost of roughly £5 per ha. The
characteristics of this dataset are displayed in Table 2.

Field data were also collected in order to test the accuracy
of the canopy segmentation models and the predictions of
wind damage. The collection of data in the field consisted on 9
square plots each a quarter of a hectare in size covering a
selection of forest stands planted with Sitka spruce (Picea

Fig. 1 Fig. 1. The study area is within the Trossachs-Ben Lomond National Park
(highlighted in green). Red rectangles show the area covered by airborne

LiDAR.
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Table 2 Laser data characteristics of ALS survey in 2002. c2 == c3
Parameter Performance § a2
Sensor Optech =
ALTM2033 %
Laser pulse 33,000Hz = 2
frequency S
Flying altitude 1000m o 14
Beam divergence 10cm al
Scanning angle 20 degrees
Sampling intensity 3-4 returns per m*
Position accuracy X, Y < 40cm
Elevation accuracy Z <9- 15cm cl c4
50m
Fig. 2 Fig. 2. Configuration of the sample plot in field. Within
each 50 50m plot the DBH, dominance and position
for every tree were measured. Within small 10 % 10m
plots tree height, height to first live whorl and crown
diameter were also measured.
Table 3 Surveyed plots in the study area.
. . Av SD Av SD To, Av, SD Basal
Plot  Age g‘l‘;{;’s (ls);'::};lya ) DBgH DBH Heig}qht Height Heigpht Crogm Crown Area (m‘j‘/’,fa )
(cm) (cm) (m) (m) (m) (m) (m)  (m*ha)
1 33 20 580 31.02 10.39 26.01 2.65 27.18 5.53 1.67 48.7 573.50
2 31 16 344 29.80 10.98 22.35 211 22.60 6.55 0.82 272 264.72
4 33 24 440 32.73 7.55 24.87 2.75 25.64 5.77 1.45 39.0 431.35
6 33 16 504 28.02 7.23 21.27 217 21.96 5.86 0.99 33:1 313.65
7 31 20 380 33.92 6.68 25.23 1.50 25.52 5.68 0.87 35.6 393.18
8 32 24 412 36.38 8.36 27.99 1.89 28.46 5.94 1.12 45.1 557.12
9 31 22 520 28.94 7.49 24.49 2.81 26.06 5.02 1.04 36.5 410.28
10 32 24 548 29.62 5.92 23.84 1.70 24.64 4.80 0.93 39.3 417.72
12 33 20 520 27.08 7.08 21.87 4.75 21.65 5.14 0.67 32.0 297.97

sitchensis) aged 31-33 years old (see Table 3). The plots were
located on terrain, with slopes varying between 5 to 25%,
except plots 2 and 4, which were located on flat terrain.
Altitude varied from 25 to 170m above sea level.

Within each 50 % 50m plots, the diameter and position of
each tree (located with a Total Station and DGPS), and its
dominance were measured. Additionally, three 10Xx10m
square plots were randomly located inside each 50 X 50m plot
as shown in Fig. 2. Within each small plot, tree heights, crown
dimensions in N-S and E-W axis and the height to the first live
whorl for all trees were also measured.

METHODOLOGY
The Construction of a Digital Canopy Model

The delineation algorithms were performed on gridded

J. For. Plann. 13:165-185(2008)

data representing the height of the canopy in every pixel. The
grid dimension was 0.5 X 0.5m, interpolated by Kriging without
anisotropy. Previously, a Normalised Digital Canopy Model
(NDCM) had been calculated by subtracting the difference
between the cloud points in the first ALS returns and an
estimation of the digital terrain model (DTM) derived after
filtering out those hits being intercepted by the forest canopy
and, therefore, not reaching the underlying terrain. The
method involved an iterative process of selection of points
within kernels of variable size according to the local minima
(SUAREZ et al., 2005).

Delineation Process
The algorithm by Popescu et al. (2003): Tree VAW

This algorithm estimates the location of the trees tops and
the crown diameter in the NDCM. In order to find the tree
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tops, the local maxima technique finds the pixel that has a
higher value than the surrounding pixels in all directions
within a search window. This algorithm uses two different
search windows, an n X n squared window and a circular area
(PopEscU et al., 2003). In order to define an appropriate search
window size, the technique assumes that there exists a
relationship between crown size and tree height. The method
requires (¢) maximum and minimum crown diameters as
initial parameters and (b) an empirical relationship between
tree height and crown diameter.

This relationship was derived from the Forest Research
Environmental Database (FRED), a field inventory dataset
extracted from permanent sample plots across the country. In
the construction of the relationship, all Sitka spruce in
Scotland for which tree crown and height were measured were
selected. The relationship between crown diameter and height
was improved by fitting them to yield class, as defined by
EpwARDS and CHRISTIE (1981): annual incremental growth in
m?, per hectare, per year. One equation was adjusted to lower
potential productivity (yield class 16). A second equation was
fitted to higher potential productivity (yield class 20, 22 and 24
combined). The initial parameters derived from data with yield
class 16 were applied to plot 2 and 6. The parameters derived
from yield class 20, 22 and 24 were applied to the rest of plots.
Initial parameters are shown in Table 4.

Once the location of the trees is set, the NDCM is
sampled at the positions of the treetop to calculate the height
of each tree. Thereafter, the algorithm calculates crown
diameter for each tree.

Firstly a 3x3 pixels median filter is applied over the
NDCM in order to avoid noise at the top of the canopy. In
order to calculate crown diameter, two perpendicular profiles
are extracted from the NDCM and then, a fourth-degree
polynomial equation is fitted to each profile. The algorithm
finds the local minimum of the fitted functions. The edges of
the crown profiles are local minimums, where the first
derivative equals zero and the second derivative is positive.
The crown diameter is calculated as the distance between the
two edges of the crown profile. The final crown diameter is
calculated as the average of the crown diameters of the two
perpendicular profiles (PoPEscu et al., 2003). See Fig. 3.

The algorithm by WEINACKER et al. (2004): TreesVIS

The algorithm starts by finding treetops using a local
maximum filter in the NDCM. This filter finds the local
maxima as the pixel with highest value compared to its
surrounding pixels (WEINACKER et al., 2004).

Sudrez et al.

Once the tree tops are located, a pouring algorithm,
starting from the tree top, aims at the detection of the tree
borders. This algorithm works similarly to the inverted
watershed algorithm (SoILLE, 1999). After the application of
this algorithm, some segments have sizes or shapes that are
improbable to represent a tree. In order to merge this
improbable tree segment with other segments, rules on
defining the area and the shape of the segmented crown and
the proximity with the nearest tree top are applied. A complete
description of the algorithm can be found in WEINACKER et al.
(2004). See Fig. 3.

The algorithm by GOUGEON (1995)

This algorithm was initially developed for high spatial
resolution optical images, but it has recently been used with
LiDAR data to delineate individual tree crowns (LECKIE et al.,
2003).

The algorithm is divided in two parts: firstly, the following-
valley approach starts by finding the local minima in the
NDCM. A pixel is considered as local minima if all its
surrounding pixels have higher values. By starting at the local
minima, the algorithm follows the “valley pixels”, which are
found between pixels with higher values. The algorithm
continues to find valley pixels until a crown is delimited.
Secondly, a complete delineation is done with the application of
the second-rule approach that, in this case, eliminated
canopies smaller than 4m? This threshold was selected after
the analysis of the field data stored in FRED. A complete
description of the algorithm can be found in GOUGEON (1995).
See Fig. 3.

Linking Process

The methodology applied in the linking process was
applied in previous works by PERSSON et al. (2003). In order to
evaluate the results, each detected tree was automatically
linked to the corresponding field tree. The position for a
delineated tree was assumed as the position of the tree top.

For each delineated crown tree different situations can
occur: (1) within each delineated tree crown, there is only one
field tree, (2) within each delineated tree crown, there are
more than one field tree and (3), within each delineated tree
crown there are no field trees. For (1), the delineated tree was
linked directly to the field tree, for (2), the delineated tree was
linked to the closest field tree within the delineated tree crown
projection, and for (3), the segmented tree is a segment that

Table 4 Initial parameters used in the method described by Popescu.
Yield Class Crown diameter-height 3 Regression Max Crown Min Crown Min Height
(m*/ha-yr) relationship significance Diameter (m) Diameter (m) (m)
16 CWD=0.0002 h*0.0061 h*+0.1958 h+0.4218 0.81 P<<0.001 8.60 1.10 7.70
20,22,24 CWD=0.0006 h*0.0252 h*+0.4627 h-0.1779 0.76 P<<0.001 10.90 2.20 7.10




The Estimation of Wind Risk in Forests Stands using Airborne Laser Scanning (ALS) 169

10 5 0 10 Meters
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Legend

Sample Plot Limit

[: Delineate Crown

e Tree Top

Fig. 3 Example of tree crown delineation in sample plot 8. The left, middle and right images show tree
crown delineation with TreeVAW, TreesVIS and Gougeon algorithms respectively.

has no field tree. For each unlinked field tree, a search was
conducted at a maximum distance of two pixels in all
directions, each pixel measuring 0.5x 0.5m. If a field detected
tree was found within this buffer distance, then the segmented
crown was assigned to it.

One of the most common problems was the segmentation
of crowns belonging to small trees that were close to larger
ones. Usually, the small undetected trees ended up with their
canopies linked to the taller ones and then becoming invisible.

Tree Attributes Estimation
Individual tree parameters considered were tree height

(H), crown diameter (L) and stem diameter at breast height
(DBH). In order to calculate the error in the estimation of

J. For. Plann. 13:165-185(2008)

individual tree parameters, the values from each segmented
tree were compared with the field measured trees after the
linking process.

LiDAR tree height (H) was calculated by all the
algorithms as the local maxima derived from the different
canopy delineations. Crown diameter in TreeVAW was
provided directly applying the algorithm by Popescu. The
delineated crowns for the other algorithms were derived from
the area of each crown (A). The crown diameter (L) was
calculated assuming a circular shape:

L=|4-A 1)

In coniferous species such as Sitka spruce there is a
strong relationship between DBH with crown diameter and
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Table 5 Coefficients for the relationship between DBH and crown diameter and tree height.

Equation Adjusted R*

Standard error (cm)

Regresion coeficientes

Regression significance
ar az as

DBH (cm)=a,L(m)+a.H (m)+as 0.89 2.99

p<<0.001 3.3236 0.8521 -3.8540

P Aberfoyle_all_plots.txt - Notepad - ol x|
Fle Edt Format View Help [
[Aberfoyle Gougeon stand all
plot_ID Age Species soil culti Draina SH(m) sDBH(cm) Indv(H) Indv(DBH)Spac GAP weibull_A weibull_k

1003 33 10 1 7 1 27.18 31.02 26.55 39.48 4.47 0 3.6 1.85

1007 33 10 2 4 7 1 31. 23.50 27.73 4.47 0 3.6 1.85

1014 33 10 1 z 1 31. 21.40 26.39 4. 0 3.6 1.85

1018 33 10 1 7 1 31. 27.00 35.72 4. Q 3.6 1.85

1019 33 10 s 1 7 1 31. 19.40 24.68 4. 0 3.6 1.85

1022 33 10 : £ 4 1 31. 23.61 25.45 4. (0] 3.6 1.85

1027 33 10 1 7 3 31. 20.16 20.09 4. 4] 3.6 1.85

1030 33 10 1 7 1 3%, 19.91 18.42 4. (4] 3.6 1.85

1031 33 10 1 z 1 3. 23.85 27.72 4. 0 3.6 1.85

1036 33 10 : £ 7 1 23 8 26.09 34.29 4. 0 3.6 1.85

1037 33 10 1 7 1 3. 23.23 27.19 4. 0 3.6 1.85

1038 33 10 1 7 1 31. 24.85 34.20 4. 0 3.6 1.85

1040 33 10 1 7 1 2. 23.65 25.86 4. 0 3.6 1.85

1047 33 10 1 7 1 31. 25.25 31.31 4. 0 3.6 1.85

1050 33 10 1 7 1 4 31. 25.05 40.99 4. 0 3.6 1.85

1052 33 10 1 7 1 31. 26.67 35.64 4. 0 3.6 1.85

1056 33 10 1 7 1 31. 25.04 31.76 4. 0 3.6 1.85

1077 33 10 1 7 1 31. 26.99 33.91 4. 0 3.6 1.85

1094 33 10 1 7 > 2 23.69 24.29 4. [¢] 3.6 1.85

1098 33 10 1 7 1 31. 21.06 32.08 4. 0 3.6 1.85

1106 33 10 1 7 3 31. 27.12 33.41 4. 0 3.6 1.85

1112 33 10 1 7 1 31. 23.50 28.03 4. 0 3.6 1.85

1122 33 10 1 7 1 31. 24.02 38.32 4. 0 3.6 1.85

1127 33 10 1 7 1 1. 23.20 30.44 4. 0 3.6 1.85

Tran 33 in a > ¥ BN &P anTaz 2 A Ear e

Fig. 4 Example of a tree list derived from ALS used for running the model.

tree height. For this reason, DBH has been estimated with L
and H using the following regression formula:

DBH = a,\L + a:H + as 2

The a,, a. and a; coefficients were calibrated using field
observations from FRED. See Table 5.

Running ForestGALES with Tree Lists

Tree lists were generated with information derived from
ALS (Fig. 4). In this case, only linked trees within the small
10x10m plots in each forest stand were considered for this
analysis because tree height was only measured for those
trees. Data derived from ALS (individual tree height and DBH)
were combined with stand measurements (age, species code,
soil type, cultivation, drainage, mean height, mean diameter,
spacing and size of upwind gap) and wind climate conditions
for each area (Weibull A and k values representing wind speed
inms™).

The model requires stand information such as mean
height (m), mean diameter (cm) and spacing (m) in order to
calculate a logarithmic wind profile above the canopy and an
exponential profile within the canopy, together with the
aerodynamic roughness (z,) and the zero plane displacement
(d). So, those parameters were extracted directly from the
Forest Enterprise Sub-Compartment Database.

The wind loading on individual trees within the stand is
then calculated as a function of the wind speed at 10 m above
each canopy using the information about the drag on the

canopy contained in z, and d (see GARDINER et al., 2000 for full
details). The total turning moment at the base of a tree is then
calculated accounting for the bending of the stem and the
overhanging mass of the canopy. Those values are derived
from individual tree height and DBH values estimated by each
tree canopy segmentation algorithm. Finally, adjustment is
made for wind gusting, location relative to the forest edge and
the width of any upwind gap using empirical correction factors
derived from wind tunnel and field experiments (STACEY et al.,
1994; GARDINER et al., 2000). Upwind gaps were set to zero as
the plots are all located in the middle of the stand.

The resistance to breakage is based on the assumption
that the wind stress remains constant between the base of the
canopy and the stem base. This allows the calculation of the
stress at breast height only, which is compared to the Modulus
of Rupture, corrected by the proportion of knots in the timber.
The critical wind speeds for overturning and breakage are
calculated as the wind speeds required to produce bending
moments in excess of the resistive factors at the base of the
stem for overturning and 1.3 metres for breakage (GARDINER et
al., 2000). Results are produced in ms™' for each individual
tree.

The wind climate model used in the program is obtained
from the DAMS scoring system, which is a function of
elevation, topographic exposure, aspect, funnelling effects and
wind zone of the country (BELL et al., 1995). The actual scoring
system is transformed into a Weibull distribution, where the
scale parameter A represents the modal wind speed [ms™'],
and the k-parameter [ms '] represents the spread of the
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values. In this application, a constant value of 1.85 has been
assigned for all the simulations, whereas Weibull-A is
estimated from the DAMS scores at each tree location. DAMS
values are converted to Weibull-A using the following
relationship:

Weibull-A = —0.9626 + 0.4279 DAMS_Value; 3

The probability of annual exceedance of the damaging
winds is calculated from the probability density function
represented by the Weibull distribution. These final
probabilities are transformed into return periods for both
overturning and breakage. The return periods are the inverse
of the probabilities and they are expressed in number of years
to damage.
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RESULTS
Crown Delineations

TreeVAW seemed to have the highest level of crown
detections around 90% in the larger plots (50 X 50m). TreesVIS
seemed to over predict the number of crown segments due to
the partition of large crowns into multiple canopies. On the
contrary, the method developed by Gougeon had the opposite
effect as many individual canopies were aggregated into larger
ones (Table 6).

These results, although initially favourable to TreeVAW,
had a limited correspondence to the reality of stand structure.
Fig. 5 depicts the distribution of stem diameters in two plots

Plot 1 Distribution of DBH classes
25
20 A #
ff‘
& 15 / \ i C—Freq_Field
g —a—Freq_Gougeon
;',' 10 —a—Freq_TreeVAW
w —e—Freq_TreesVIS
A 4 ! L
/ -
D "\‘.‘ b = e : T .l \.IJ T T T T T ’ T T -r '!'\\1" 'r—.'v ?’# -
8101214 1618 2022 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58
DBH {in cm)
Plot6 Distribution of DBH classes
35
30 i
f\% CFreq_Field
25 : —a— Freq_Gougeon
g 20 / / \ -\ —~a—Freq_Tree VAW
=
§ 15 ——Freq_TreesVIS
e
10
5
0 9 L '
6 B8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
DBH {in cm)

Fig. 5 Predictions of stand structure using stem diameter classes obtained with each method compared to

field observations in Plots 1 and 6.

J. For. Plann. 13:165-185(2008)
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Table 6 Crown delineation with each algorithm.

TreeVAW TreesVIS Gougeon

Plot Field Trees Delineated Trees % Delineated Trees % Delineated Trees %

1 145 103 71.0% 144 99.3% 89 61.4%

2 86 93 108.1% 141 164.0% 55 64.0%

4 110 100 90.9% 164 149.1% 99 90.0%

6 126 103 81.7% 176 139.7% 89 70.6%

7 95 98 103.2% 153 161.1% 82 86.3%

8 103 87 84.5% 88 85.4% 90 87.4%

9 130 105 80.8% 167 128.5% 103 79.2%

10 137 132 96.4% 168 122.6% 111 81.0%

12 130 127 97.7% 167 128.5% 109 83.8%
Total 936 845 90.27% 1192 127.35% 738 78.84%
12 W The Estimation of Individual Tree Height and DBH
100 The estimations of height and stem diameter at individual
. ' 1 BE & tree level with each algorithm were compared to field

— £ B Gougeon
[ |OTreevAwW
OTreesVIS

o
=
=1

Percentage of Trees Detected
a
3

o
N
S

0.00

20 30 40 60

Fig. 6 Individual tree crown delineation with each method in
all plots distributed by diameter classes.

estimated by each algorithm compared to field observations
(area in colour). Accordingly, TreesVIS seem to over predict
the number of trees with small diameters with the partition of
larger crowns into a lot of spurious trees. TreeVAW also seem
to concentrate predictions on low diameter classes while under
predicting larger diameters ostensibly. Gougeon’s method, on
the contrary, seems to approximate better stand structure
despite the number of predicted trees is much lower than the
other two methods.

The number of trees detected by each method inside the
10 % 10m plots was 58% with Gougeon, 75% with TreesVIS and
76% with TreeVAW. The performance of the models by
diameter classes showed a general decrease with the smallest
trees. Trees with diameter classes above 40cm were accurately
detected more than 80% of the time with TreeVAW and
TreesVIS. On the contrary, the general performance of the
Gougeon method barely reached 60% in the best case. The
three models detected all trees in the 60cm DBH class (Fig. 6).

observations for all detected trees in the 10X 10m plots.

Individual tree height was estimated with a RMSE (%) of
1.93m (8.12%), 2.40m (10.05%) and 2.29m (9.46%) using
TreeVAW, TreesVIS and Gougeon respectively with P << 0.001
(See Table 7). Overall, there were no substantial differences
between the three algorithms. All the models showed similar
bias, underestimating tree heights between a 1.18m and
1.59m. There were no important differences between
dominance status, diameter classes or observed height in the
field in the distribution of the residuals. However, differences
between the trends, depicted by each linear model, and the
one-to-one relationship suggest that underestimations seem to
increase towards the tallest trees.

TreeVAW showed a slightly better performance in all
plots except plot 1, which presented the highest tree density
and where the algorithm by Gougeon worked better. The
discrepancies between observed and predicted values (R?)
seemed to be higher in TreesVIS (see Fig. 7 to 9).

The algorithm by Gougeon was found to be the most
effective for estimating DBH with a RMSE of 6.15cm (18.798%)
followed by TreeVAW with a RMSE of 7.28cm (22.82%) and
TreesVIS with a RMSE of 7.67m (24.19%), all with P << 0.001
(See Table 8). All the algorithms generally underestimated
DBH in all classes, especially in the largest diameter classes,
where the negative trend seem to increase compared to the
one-to-one relationship (see Fig. 7 to 9). The distribution of
residuals did not infer any error pattern related to dominance
status or diameter classes.
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Table 7 Individual Tree Height estimation with each method.

Observations Average Height (m) RMSE (m) RMSE (%) Mean difference (BIAS) (m)
TreeVAW 79 23.82 1.93 8.12% —1.18
TreesVIS 80 23.91 2.40 10.05% —-1.45
Gougeon 61 24.19 2.29 9.46% -1.59
Table 8 Individual DBH estimation with each method.
Observations Average DBH (m) RMSE (m) RMSE (%) Mean differences (BIAS) (m)
TreeVAW 79 26.97 7.28 22.82% -4.95
TreesVIS 80 26.84 7.67 24.19% —4.86
Gougeon 61 29.43 6.15 18.79% =3.31
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Fig. 7 Tree height and DBH estimations following the method by Gougeon.

J. For. Plann. 13:165-185(2008)



174

Suarez et al.

. . y= 0.7341x - 5.1502
Predicted vs. Observed Height {TreeVaw) RZ=06122
n=78
33.00 - e
31.00
29.00 -
E2rw ey et
: + i 9..-"/'
g 25.00 . S - =
£ 2300 + 5 = -t
w
b e —
. ot
17.00 )’ﬁ'
15.00 . . . ; : : . : .
15.00  17.00  18.00  21.00  23.00 2500  27.00  29.00  31.00  33.00
Height field (m)
Predicted vs. Observed DBH (TreeVaw) y=0.347x + 14.375
R =0.407
n=179
56.00 - (0 e
50.00 -
4500 -
g 40.00 - +
& 35.00 — -
g : : 37. M
© 30,00 Fes ¥
= * ?’/ P hd & L 3
26.00 T
20.00 M ? +
15.00 ; / ; ; . : ; ; !
10.0 16.0 20.0 250 30.0 350 40.0 45.0 50.0 55.0

DBH field (cm)

Fig. 8 Tree height and DBH estimations following the method by TreeVAW.
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Running ForestGALES with Tree Lists

Tree lists were generated for all plots with the Tree
Height and DBH parameters derived from the three
algorithms. The ForestGALES model outputs the Critical
Wind Speed (CWS) and the probabilities for both Overturning
and Breakage. Likewise, the model was also run with the data
obtained in the field for the 10x 10m plots for a comparative
analysis of the results (Fig. 10 to 12).

Overall, the three algorithms seemed to underpredict the
CWS for Overturning and Breakage for trees above 30-35 cm.
On the contrary, smaller trees below this threshold showed
over predicted CWSs. The larger discrepancies were observed

Sudrez et al.

in the TreesVIS model, whereas Gougeon was more adjusted
although with less number of trees detected. R* were generally
low in all simulations, especially for tree breakage. The
Gougeon method obtained better results than the other
models for Overturning and Breakage.

The distribution of errors is plotted in Fig. 13. Gougeon
showed a slightly better performance than the other models
that were very similar to each other in their predictions for
both Overturning and Breakage. These two models, in
addition, showed the largest discrepancies with error values
reaching +15ms . The error distribution by diameter classes
did not show any difference at all in each algorithm.
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Fig. 10 Critical Wind Speeds for Overturning and Breakage estimated by Gougeon.
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CWS for Overtuming generated by the three segmentation algorithms
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The Spatial Distribution of the Probability of Wind Damage

A Tree Height and DBH recovery model was derived for
the three algorithms using the inverse regression models
found in Fig. 7 to 9. These models were used to predict height
and DBH values in the control plot (Plot 6) to generate a
spatial distribution of CWSs (Fig. 14) and Return Periods for
damage (Fig. 15). The use of the recovery models allowed a
better fit between different diameter and height distributions,
especially for the larger trees where the three models
presented large underpredictions.
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6250 249255 249260 249G

Gougeon

249235 249240 249245 249250 24925

TreesVIS

Fig. 14 CWS for Overturning as estimated by Gougeon, TreeVAW and TreesVIS models respectively.
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The spatial distribution of CWS for overturning in plot 6 is
represented in Fig. 14, where the location of individual trees
and crown dimensions are overlaid on top of a surface model
generated from the CWS in ms™' required for overturning
each individual tree. The comparison between the average
CWSs for overturning and breakage showed that TreesVIS
provided more accurate estimations than the other two
methods at stand level (Table 9). Instead, Gougeon and
TreeVAW had differences between 1.2 and 1.5ms'. However,
the spatial distribution of CWS in Fig. 14 showed that the
results observed in TreesVIS presented large structural

698030

698025
698020

698015

698010 ’
N N

TreeVAW

Critical wind speed in ms™

Individual

crowns are represented by circles at a map scale and positioned in X and Y. Values expressed in ms .
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discrepancies, were areas that concentrated highly stable trees
surrounded pockets of large instability. As a result, it seemed
that default and excess errors tended to cancel each other
more effectively with this model than with the other two,

Table 9 Average CWS for overturning and breakage
observed in the field and estimated by each
algorithm (in ms ™).

where the transition between stable and instable trees
appeared to be smoother.

The comparisons between observations and estimations
at tree level derived from the trees inside the small plots
proved inconclusive for all models. The three algorithms
showed similar patterns of underprediction of CWS in the
larger trees and overprediction for the smaller trees (Fig. 15).
Again, TreesVIS presented the largest extremes in both over
prediction and under prediction observed in Fig. 14.

The distribution of risk in the three models indicates that

CWS O CWS Break Diff O Diff Break . .

: ver rea ver rea the smaller canopies are most likely to reach unstable
Fleld 15 201 i i conditions due to lower taper values. The three models
Gougeon 18.6 17.3 13 2.8 seemed to agree that more than 50% of the stand has a CWS
TreeVAW 18.8 17.8 1.1 2.3 value below 20ms ', regarded as a stability threshold. The
TreesVIS 20.3 20.4 0.4 0.3 RMSE of predictions compared to observations in the field
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showed similar values (4.78ms™*' for Gougeon, 4.19ms ' for damage (expressed in years) produced some degree of

TreeVAW and 4.11ms ' for TreesVIS). clustering in areas with trees with small diameter classes. This
The comparison of the CWS for creating damage to the effect was more evident in TreesVIS, which tended to estimate

annual probability of reaching this critical value, extracted more small diameter classes than the other two models.

from the Weibull distribution of mean wind speed values, The CWS for Breakage (not depicted in the document)

produced a map showing the return period for damage in Plot followed similar spatial patterns as the ones described for

6 (Fig. 15). The spatial distribution of the return period for Overturning. However, values were generally lower than for
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Fig. 16 Return Periods for Overturning (values expressed in years) as estimated by Gougeon, TreeVAW and
TreesVIS models respectively. Individual crowns are represented by circles at a map scale and positioned in
X and Y.
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Table 10 Percentage distribution of the return periods for Overturning with each method aggregated by risk status classes. The
Risk Status classes in ForestGALES calculate the average return period between winds strong enough to cause wind

damage.
Risk Status Probability Return Period Gougeon TreeVAW TreesVIS
1 <0.01 >100 years 78.5 85.1 78.8
2 0.01 - 0.02 50 - 100 years 15.2 9.2 9.6
3 0.02 - 0.03 33 - 50 years 3.8 2.3 T
4 0.03 - 0.05 20 - 33 years 2.5 2.3 3.8
5 0.05-0.10 10 - 20 years 0.0 1.1 0.0
6 >0.10 <10 years 0.0 0.0 0.0

Overturning. The fact that this stand is growing in a stable soil
type (Brown earth) and the general underprediction of stem
diameters observed in all models has created slightly lower
CWS values for breakage in this simulation.

At stand level, TreeVAW presented a slightly more stable
stand structure than the other two algorithms (Table 10). The
return periods for damage grouped into the six risk status
classes described in ForestGALES presented a more stable
stand structure in TreeVAW with 85.1% of the stand in a risk
status 1 class (representing a single storm in more than 100
years that is likely to create wind damage within the actual
structure).

Field measurements inside the 3 10 % 10m plots revealed
70% of the trees in the most stable class, whereas TreeVAW
estimated 85%, Gougeon was 72% and TreesVIS was 75%. The
results for breakage at tree level showed a similar trend to the
one described for CWS and a good proportion of trees that
were in risk status 1 for overturning, now moved to risk status
2:

DISCUSSION

The comparative analysis of the three algorithms
produced dissimilar results in terms of tree detection and
canopy delineations. Gougeon’s method produced the lowest
number of canopy delineations in all the 9 stands. This
algorithm, originally developed for tree counting and species
classification using optical images, aggregated individual tree
canopies into large segments that often grouped several
crowns. Gougeon’s method differed from the other two in
their initial approach. The method was based on the searching
for the lowest points between crowns. TreeVAW, instead,
relied on a detection of tree top and a search algorithm for
canopy boundaries based on allometric relationships between
canopy dimensions and tree height. TreesVIS, also relied on
tree top detection first and a search in all directions for the
lowest limits of each canopy.

Having analysed the results produced by the three
algorithms, the TreeVAW method was considered the most
reliable method for canopy detection by en large. Despite
TreesVIS using initially a similar approach to TreeVAW for the

J. For. Plann. 13:165-185(2008)

initial detection of tree tops, the smoothing of the NDCM with
the 3x3 kernel was found to be more effective in TreeVAW
for removing spurious tops than in TreesVIS.

Fig. 5 also revealed an interesting detachment between
numbers of detected trees and stand structure. In this case,
Gougeon’s method seemed to be more in-tune with field
observations than the other two methods. Both TreeVAW and
TreesVIS over predicted the number of trees with smaller
diameters, providing therefore a biased view of stand
structure. This observation led to the conclusion that without
the linking process that allowed us to associate crown
delineations to real trees observed in the field, it was very
difficult to gauge the operational advantages of TreeVAW or
TreesVIS for mapping forest stand structures.

Fig. 5 exposed another interesting piece of information.
The estimations of DBH produced by TreesVIS were similar to
the predictions of Gougeon for larger trees. Somehow, the
method of looking for the boundaries between canopies in
those two methods proved more useful than the method
implemented in TreeVAW. This draws us to the conclusion that
substantial improvements in TreesVIS, in terms of tree top
detection using an smoothing kernel similar to TreeVAW, can
render better results in the future by eliminating noise
associated to the construction of NDCM using spatial
interpolation methods. Secondly, the use of allometric
relationships in TreeVAW has to be revisited. Despite the fact
that these relationships were constructed using information
derived from permanent sample plots in the country and tuned
to estimated yield class in the field, they proved limited by the
fact that the plots were located in areas previously thinned.
The influence of management regimes over these forest stands
proved to be a dynamic factor that current models could not
take into account. Finally, Gougeon’s method also proved its
limitations with small diameter classes. Those trees were
aggregated to neighbouring crowns because they could not
gather enough laser returns to produce 3-D structures with
clear boundaries. These limitations were exposed in Fig. 6
with a smaller percentage of tree detections in lower diameter
classes compared to the other two algorithms.

However, not all the blame had to be imposed on each
method. The linking process revealed a positive correlation
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between tree dimensions and its probability of being detected
by any of the three methods. In LIDAR surveys, currently
small canopies tend to be confused with the neighbouring
ones. On the contrary, dominant and co-dominant individuals
normally receive more laser hits than the smallest trees, which
allow them to be more easily detected by any canopy detection
algorithm. Some authors like NAESSET (1997) or MAGNUSSEN et
al. (1999) point out the need to receive at least 6-10 returns per
individual tree if a three dimensional structure is to be
detected. Likewise, narrow scanning angles of less than 10
degrees help to reduce the shadowing effects of large trees
over the smallest ones, increasing the probability of detecting
more individuals. In our case, a scanning angle of 20 degrees
seemed to limit the possibilities of being able to differentiate
small tree canopies.

The estimation of DBH using a relationship between
height and canopy dimensions is also problematic in the Sitka
spruce stands. First of all, as already pointed out, these stands
had been previously thinned which limited the validity of
current models to estimate parameters hidden to ALS such as
DBH. Secondly, we must consider the fact that small footprint
laser scanning cannot penetrate deep into the forest canopy.
The best laser returns can do is to retrieve the boundary
between neighbouring tree canopies, ignoring that Sitka
spruce branches can grow sideways well under the
interlocking point between two crowns. This is more evident in
larger trees were the linear trends seemed to depart even
further in proportion from observations in the field (see DBH
estimations in Fig. 7 to 9).

The estimation of individual tree parameters in detected
trees such as height and diameter did not show important
differences between the three algorithms. TreeVAW produced
slightly better results for tree height whereas Gougeon did the
same for DBH. In general, all the models consistently under
predicted height and diameter values. In ALS surveys, laser
returns normally hit the lowest parts of the tree crowns
missing 99% of the time the apices, which produce a normal
underestimation of 7-8% of the true tree tops. The fact that
some heights appeared overestimated in some trees normally
of medium to small dimensions may be explained by its
proximity to parts of the crowns of larger trees.

The distribution of the residuals around each regression
model presented the largest discrepancies in the small and
medium size trees (Fig. 7 to 9). R* did not confirm substantial
differences between the three methods in both height and
DBH. TreeVAW produced a slightly better estimation of
heights, whereas Gougeon, not surprisingly, manifested minor
achievements in the predictions of DBH due to larger crown
dimensions of the delineated polygons.

The use of tree lists generated from ALS in ForestGALES
proved very useful at stand level. Despite the discrepancies in
both excess and default, overall the three methods achieved
similar predictions of CWS and return periods for both
overturning and breakage. The best predictions were achieved
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with TreesVIS in the control plot using the recovery models
for height and DBH derived from Fig. 7 to 9. However, the
spatial analysis of the results obtained with this method
verified large differences in the spatial distribution of CWSs. In
this respect, evidence also gathered from Fig. 5 depicting the
estimation of diameter distribution inside large plots and the
minimal differences obtained in the predictions of height at
individual tree level, appeared to indicate that perhaps
Gougeon’s method was the most reliable method of the lot.

However, this assumption could not be validated with the
comparison of predictions of CWS and risk status at tree level
with the observed values in the field. The comparison, possibly
due to being limited to the few tree measurements collected in
this plot, did not conclude a superior performance of any
particular method. Quite the opposite, it showed once more
that the large discrepancies observed with the TreesVIS
method just managed to approximate results at stand level and
did not provide a good insight into the influence of stand
structure into the distribution of wind risk.

Fig. 14 and 15 presented different distributions of risk
related to diverse estimations of stand structure. A common
pattern was observed in all of them regarding the different
role of dominance status in the distribution of wind risk. Large
trees were more stable than small trees and presented higher
CWS. Their favourable taper ratio made them more stable than
trees with lower diameter to height relations. Also, it was
found that the spatial distribution of both the CWSs and the
return periods did not follow any evident clustering or
inhibition process of the largest trees over the smallest.
Perhaps, in the TreesVIS model it could be discerned some
clustering of low CWS due to the partition of crowns into
smaller individuals.

CONCLUSION

The estimation of structural parameters in forest stands
such as number of individuals, DBH classes and height at tree
level and its influence on tree stability, using three crown
delineation algorithms on ALS data achieved good results at
stand level but proved inconclusive at individual tree level.

Each model obtained partial good results when compared
to the others. For instance, TreeVAW was better for estimating
number of individuals and tree height. Gougeon achieved
better results at modelling stand structure (diameter classes)
and DBH at tree level. TreesVIS, seemed to offer better
predictions of CWS required to overturn or break trees at
stand level. However, none of them provided a valid indication
of being able to map accurately enough the spatial distribution
of tree parameters. These resulted in a confusing interpreta-
tion of the spatial distribution of wind risk in the control plot,
which, at present, reduces the operational application of any
canopy segmentation method.

However, the study evidenced the weaknesses and
strengths of each method for future improvements. Canopy
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delineations based on the location of boundaries between
detected canopies seemed more effective than current
allometric models in thinned forest stands. Nevertheless, this
should not be the only parameter to be considered. The
detection of tree tops, as proposed by TreesVIS and TreeVAW,
should be a starting point in segmentation algorithms for
detecting individual trees over which canopy dimensions can
be associated to afterwards. At this point, TreesVIS seems a
more viable option for the future.

Finally, future studies should aim at a more thorough
understanding on the effects of different ALS flight
configurations over the possibility of detecting individual trees
and their dimensions. Most commercial configurations with
low sampling density and wide scanning angles do not seem to
be the optimal configuration for accurate measurements of
individual tree parameters, despite their obvious advantages in
terms of cost. A rigorous analysis of the effect of those flight
parameters may determine cost-effective alternatives to
common arrangements.

ACKNOWLEDGEMENTS

We would like to thank the Chief Executive Discretionary
Fund, the Corporate Forest Services and to the European
Regional Development Fund (ERDF) through the Interreg
IIIB North Sea Programme STORMRISK project for the
financial support that made possible this study. Also, we would
like to thank the Edinburgh Earth Observatory for their
enormous contribution in this work providing the expertise
and the computing facilities to make possible the analysis of
ALS data. Finally, we would like to thank the authors of the
three algorithms tested in this study: Dr. Francois Gougeon
that provided access to its ITC extension to PCI Geomatica
and Geomatica Software to allowed us temporal access to their
software; Dr. Sorin Popescu for his continuous advice and
permission to use his method and Dr. Holger Weinacker and
Prof. Barbara Koch for granting us access to TreesVIS and
their support in the processing of the data.

LITERATURE CITED

BeLL, P.D., Quing, C. P and WRIGHT, J. A., (1995): The use of digital
terrain models to calculate windiness scores for the windthrow
hazard classification. Scottish Forestry 49(4): 217-225

Epwarps, P.N. and CHristig, J. M., (1981): Yield models for forest
management. Forestry Commission Booklet 48, Forestry

Commission, Edinburgh

GARDINER, B. A., SuArez, J. C., Acuim, A., HaLk, S. and Nicorl, B.,

J. For. Plann. 13:165-185(2008)

(2004): ‘ForestGALES 2.0. A PC-based wind risk model for British
forests’. Forestry Commission publications. Edinburgh. ISBN
0855386320. 60 pp

GARDINER, B. A., Pert01A., H. and KeLLomakt., (2000): Comparison of
two methods for predicting the critical wind speed required to
damage coniferous trees. Ecological Modelling 129: 1-23

GouGeoN, E A., (2005): ‘The individual tree crown (ITC) suite.
Canadian Forest Service. Victoria, British Columbia, Canada

Leckig, D., GouGeon, E, HiL, D., ARMSTRONG, L. and SHREENAN, R.,
(2003): Combined high-density lidar and multispectral imagery
for individual tree crown analysis. Canadian Journal of Remote
Sensing 29(5): 633-649

MAGNUSSEN, S., EGGERMONT, P. and Lariccia, V. N., (1999): Recovering
tree heights from airborne laser scanner data. Forest Science 45:
407-422

Nasset, E., (1997): Determination of mean tree height of forest
stands using airborne laser scanner data. ISPRS Journal of
Photogrammetry and Remote Sensing 52: 49-56

PerssoN, A., HoLMmGREN, J. and SopermaN, U., (2003): Detection,
measurement, and species classification of individual trees for
forest inventory and visualisation. (In Proceeding of the
ScandLaser Scientific Workshop on Airborne Laser Scanning of
Forests). Umea, Sweden: 223-234

Porescu, S. C., (2006): TREEVAW (Tree Variable Window).
http://www-ssl.tamu.edu/personnel/s_popescu/TreeVaW/. Last
access: 18-02-2006

Porescu, S. C., WynNE, R. H. and NELson, R. E, (2003): Measuring
individual tree crown diameter with LiDAR and assessing its
influence on estimating forest volume and biomass. Canadian
journal of remote sensing 29(5): 564-577

Soiik, P, (1999): Morphological Image Analysis. Springer, Berlin,
316 pp

Stacey, G.R., BercHer, R.E., Woop, C.]J. and GARDINER, B.A.,
(1994): Wind flows and forces in a model Spruce forest. Boundary-
Layer Meteorology 69: 311-334

SuArez, J.C., DunHaMm, R.A., BARReTTE, J. and GARDINER, B. A,
(2001): The Validation of ForestGALES. Forest Research Internal
Report. 85 pp

SuArez, J. C., ONTIVEROS, C., SMITH, S. and SNAPE, S., (2005): The use
of airborne LiDAR and Aerial Photography in the estimation of
individual tree heights in forestry. Computers and Geosciences
31(2): 253-262

WEINACKER, H., KocH, B., HEYDER, R. and WEINACKER, R., (2004):
Development of filtering, segmentation and modelling modules
for lidar and multispectral data as a fundament of an automatic
forest inventory system. Proceedings of the ISPRS: Laser-
Scanners for Forest and Landscape Assessment, Freiburg,
Germany: 50-55

(Received 12 January 2007)
(Accepted 6 May 2007)






187

Article

Estimation of Biophysical Parameters of Individual Tree Stands
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ABSTRACT

The aim of this study is to examine the performance of a numerical ellipsoid modeling methodology to
estimate tree structural characteristics in mixed forest using airborne Light Detection And Ranging (LiDAR) data
along with airborne Digital Matrix Camera (DMC) image. In three-dimensional numerical analysis using points
cloud of LiDAR data, ellipsoid model has the potential to simultaneously estimate tree top position, diameter and
shape of individual tree crown. A Japanese cedar plantation with randomly mixed pine trees was chosen in this
study as this type of forest, which is typical of Japanese cedar plantation in Japan. We developed a methodology
consisting of both tree species classification and estimation of characteristics of tree structure with the followings
steps: (1) classification of area of cedar and pine trees in the mixed plantation by using ortho-DMC image, (2)
estimation of number of trees and estimation of tree top location in horizontal plane by standard ellipsoid model for
each species, derived from Crown Height Model (CHM) and based on random selections of points clouds on each
of the classified areas, (3) estimation of tree top height and realistic shape of individual tree by using a truncated
cone shape model and LiDAR points cloud in respective classified areas. The study area is a cedar plantation forest
in Northern Japan. LIDAR measurements with a density of 14.65 pulses/m* and DMC imagery with a spatial
resolution of 10cm are used in this study For validation, ground truth data of tree species, geographic tree position
and tree height were measured at the study site. The developed methodology could correctly identify a total of 73
out of 89 cedar trees in the areas classified as cedar, and 12 out of 29 pine trees in areas classified as pine. Validation
of estimated tree height resulted in coefficient of determination (R*) of 0.72 and 0.78 for pine and cedar respectively.
This study indicates that fitting the ellipsoid model and the truncated cone shape model to LiDAR points cloud is
able to simultaneously estimate tree top position, crown shape and diameter of individual tree crown.

Keywords: mixed forest, Japanese cedar, crown shape, ellipsoid model, truncated cone shape model.

consuming and expensive. However, recently, high-resolution

INTRODUCTION airborne laser scanning data and high spatial resolution multi-

spectral image has been increasingly available and used for

It is important to monitor and investigate forest attributes forest assessment and inventory. Previous studies have shown

such as species, stand density, tree height, tree crown that number of trees, tree height and timber volume in specific
diameter and diameter-at-breast-height (DBH) for efficient area can be estimated by airborne laser scanning data.
forest management. Traditional forest inventory is very time- (NILSSON, 1996; NASSET, 1997; MEANS et al., 2000; NASSET et al.,
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2001; N#sseT, 2002; NASSET et al., 2002; HYPPA et al., 2001;
PERSSON et al., 2002; PATENAUDE et al., 2004; TAKAHASHI et al.,
2004). However, most of the previous researches were in
homogeneous forests or plantations. Heterogeneous forest
consists of areas of different species which have to be
classified correctly with appropriate methodology before
estimation of biophysical variables of each species (POPESCU et
al., 2004; PERSSON et al., 2004, HOLMGEN et al., 2004).

In this study, we demonstrate a methodology to effectively
detect the tree shape (crown shape), tree position as well
species in a heterogeneous plantation for precise forest
assessment and inventory. Tree shape is related to other
biophysical variables, such as basal area, volume and dry
biomass (NELSON, 1997), and is valuable for estimation of light
condition on the forest floor as inputs to ecological models.
Some previous studies have carried out reconstruction of
crown shape in coniferous species. SHENG et al., (2001)
reconstructed conifer crown surface from high-resolution
aerial images. HAvASHI ef al., (1997) carried out modeling of
canopy structure of Sugi (Cryptomeria japonica) and Hinoki
(Chamaecyparis obtuse) based on numerical simulation along
with ground survey.

We took into consideration the fact that, point cloud of
LiDAR data has the potential to reconstruct tree crown shape.
Based on this fact, if one would find an appropriate model to
approximate individual tree crowns from LiDAR points cloud,
then tree top position and crown shape could be also be
simultaneously estimated. In this study, we demonstrate an
effective methodology to estimate tree structure variables,
namely, tree top position, crown shape of individual trees in a
mixed forest of Japanese cedar and Japanese red pine by
synergetic use of LIDAR data and DMC imagery. To achieve
our objective, classification of areas of individual species were
done using DMC imagery and tree top position in horizontal
plan was estimated using numerical ellipsoid model. Tree
crown shape and height were extracted using a numerical
truncated cone shape model.

MATERIALS
Study Area

The study area is a plantation forest managed by
Mitsubishi Paper Mills Co., Ltd. The area is located in north of
Honshu Island, Japan (lat. 40°39" N, long. 141°5 E). The
ground elevation is between 190-240m above sea level. The
dominant tree species are Japanese cedar (Cryptomeria
japonica) and Japanese red pine (Pinus densiflora). Mixing rate
of cedar and pine in the area is about 75.4% and 24.6%
respectively according to field sampling. Thus, the forest is a
cedar plantation with randomly mixed pine trees. Fig. 1 shows
site location and Fig. 2 shows an example of DMC image
subset of the study area.

Endo et al.

Teét site

Fig. 1 Site location at northern part of Honshu Island, Japan

Fig. 2 A DMC image subset of the study area
Black circle stands for geographic position of tree
from field survey.

Digital Matrix Camera and LiDAR Data

DMC imagery and LiDAR data for the study area was
acquired under relatively clear skies. The DMC is an aerial
sensor using CCD array. The main camera body is assembled
with four high-resolution panchromatic camera heads and four
multi-spectral camera heads. Output image size of panchro-
matic and color images are 7,000% 4,000 and 3,000 x 2,000
pixels, respectively. In a DMC imagery, integration of arrayed
CCDs, the global positioning system, a gyro and an inertial
navigation unit contributes to increased accuracy of
photogrammetric measurements. DMC data was acquired on
11th August, 2004 with a 60% overlapping and side lapping.
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The spatial resolution at the ground level was 0.1 meter.
LiDAR data was acquired on 11th and 12th August, 2004 using
an airborne laser scanner at a cruising speed of 110kt and at a
height of 1,830meters. Scan rate, pulse rate and scanning
width were 39.0Hz, 46.0kHz, and 647meters respectively.
Average footprint size was 0.47meters. The scanner was
ALS50, a product of Leica Geosystems, that has horizontal
accuracy and vertical accuracy of + 30cm and + 15cm
respectively. The average density of laser reflection was 14.65
pulses per square meters.

Field Data

A field survey was conducted in the first week of August
2004. Precise geographic position of every tree top was
measured using a GPS (DIL4, NovAtel inc.) and a beacon
(MBX-3S, CSI Wireless) for differential GPS
positioning. Height of individual trees was acquired with a
portable laser measurement device (LaserAe300, MDL). DBH
and tree species for all trees were recorded. Table 1 shows the
characteristic of the study plot.

receiver

Table 1 Characteristics of study plot

Area (ha) 0.16
Number of trees 118
Number of trees per hectare 732
Year of planting 1955
Average tree height (m) 21
Average DBH (cm) 26.5
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METHODOLOGY

The methodology to estimate tree species, crown shape,
tree height and tree top position consisted of three major
steps: (1) pre-processing of LIDAR and DMC raw data, (2)
classification of areas of each specie by using DMC ortho-
image, (3) creating standard ellipsoid models for cedar and
pine derived from CHM, (4) fitting each of the standard
models to CHM at corresponding classified areas in order to
identify individual tree top position in horizontal plane, and
finally (5) fitting a truncated cone shape model to points cloud
at the estimated tree top position in horizontal plane in order
to estimate tree top height and crown shape. The procedure
developed for determination of tree shape is summarized in
Fig. 3. The methodology consisted of following detail steps: (1)
Digital Surface Model (DSM) of 1.0m grid, Digital Elevation
Model (DEM) of 1.0m grid and CHM of 1.0m grid were
created from the smoothed LiDAR data by nearest neighbor
method, (2) DMC raw data was orthorectified by using DSM
and collinearity equation, (3) pine and cedar areas in the
orthorectified DMC image were extracted by unsupervised
classification, (4) standard ellipsoid models suitable for each
species were created from CHM based on random sampling at
corresponding classified areas, (5) CHM and the classified
image were overlaid, and individual CHM data corresponding
to each species was identified, (6) individual tree top positions
in horizontal plane for pine in pine areas were estimated by
correlation between the standard ellipsoid model and CHM,
(7) crown shape and tree height of pine at the estimated tree
top position in horizontal plane were calculated by truncated
cone shape model (Fig. 5), (8) individual tree top positions in
horizontal plane for cedar in cedar areas were estimated by
correlation between the standard ellipsoid model and CHM,
and finally, (9) tree shape and height at the estimated tree top

Position
Shape
Height

I

1 Calculating best shape
| by using a caldera

1 ellipsoid model

DSM '
(raster/pmrlts cloud) ' Tree top Extraction of
-:rb estimation the pine
CHM i | of the pine canopy shape
- »  (points — [
LIDAR cloud) '
L E Tree top Extraction of
DEM Ly! estimation Y the cedar
(raster) of the cedar canopy shape

Fig. 3 Flow chart describing the estimation of tree shape from LiDAR and DMC raw data
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Fig. 4

position in horizontal plane were calculated by a truncated
cone shape model.

Orthophoto Image

DMC image was used for classification of species in this
study. DMC raw image can discriminate small objects with its
high spatial resolution of 10cm. However, DMC imagery is
strongly affected by terrain relief which is one of the
distortions. In this study, ground control points for geometric
correction could not be used, because of closed canopy and
scarcity of open space in our site. In view of this situation,
ortho-rectified DMC image was mapped to LIDAR imagery as
LiDAR had a reliable positional accuracy. The methodology
employed in registration is technically similar to PERSSON et al.,
(2004), except the fact that, PERSSON et al., (2004) mapped
LiDAR imagery to DMC imagery.

Numerical Ellipsoid Model
Tree crown of conifer was represented as an ellipsoid

model after SHENG et al., (2001). An ellipsoid model is shown
in Eq. 1.

(Z+ch— cz)”+ ((X*X,)z +(Y+ Y'[Z))rr/z_ 1
o 4 ) M
cz2—=ch<Z<cz

where, (X,, V) is the 2-D coordinates of the crown top, cz is
tree height, (X, Y, Z) is a point on the crown surface, cw is
crown width, ¢k is the crown height, and cc is crown curvature.

Endo et al.

(b)

The standard ellipsoid models for pine (a) and cedar (b)

Classification of Tree Species and Estimation of Tree Top
Position in Horizontal Plane

Classification between cedar and pine area and estimation
of individual tree top position in horizontal plane were carried
out by the following steps. As a first step, the cedar and pine
areas in the orthorectified DMC image were classified by an
unsupervised classification method. The pine areas, which had
higher radiance than the cedar, could be easily visually
interpreted and this interpretation was used for validation of
classification. In second step, tree top positions in horizontal
plane for pine in pine area were calculated using correlation
between CHM and the standard ellipsoid model. Correlation
map was calculated by the standard ellipsoid model at all
pixels of CHM corresponding to the classified pine area. The
location of pixels with high correlation became tree top
positions in horizontal plane of the individual pine trees.
Similarly, tree top positions in horizontal plane for cedar were
estimated for cedar areas using the methodology in second
step above.

Fig. 4 shows the standard ellipsoid models of pine and
cedar, respectively. In standard ellipsoid model, tree crown
shapes were defined with, cw=4.9m, ¢h=3.6m, cc=1.0 for pine,
and cw=1.5m, ch=1.3m, cc=1.0 for cedar (Fig. 4), which were
based on random sampling in CHM in individual species and
validated using ground truth data.

Identifying Optimum Tree Shape by a Truncated Cone Shape
Model

LiDAR points generally didn’t fall on the true crown top
and points cloud around tree top generally had an irregular
distribution. Due to this fact, in this study, we used a truncated
cone shape model to effectively approximate the tree shape
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(a)

and tree top position in vertical plane. Fig. 5 shows a sample of
a truncated cone shape model.

Fitting accuracy was evaluated by standard deviation
(S.D.) between the model and points cloud of individual tree.
The model could avoid the effect of irregular distribution of
points cloud around tree top area. Overall accuracy of the
method was validated based on tree height only since we didn’
t have any data on crown surface owing to the difficulty of
such measurement.

We carried out the search for the optimum tree shape in
following way: after the estimation of tree top position in
horizontal plane, optimum crown shapes were determined by
an optimum combination of cw and cz, by varying cw at 0.2
intervals from 1.5 to 4.5m for pine and 1.1 to 2.9m for cedar,
and by varying ¢z at 0.3m intervals from 0 to 0.6m for both
species. Here in Equation (1), ¢k was fixed at 2.5m and cc was
fixed at 1.0 for pine, and ck was fixed at 1.5m and cc was fixed
at 1.0 for cedar. This was done in order to remove the upper
2.5m and 1.5m of tree crown in pine and cedar canopies
respectively.

RESULTS AND DISCUSSION

The tree extraction results for each species are shown in
Fig. 6, Fig. 7 and Table 2. The center positions of gray circles
in Fig. 6 stands for estimated individual tree top positions and
the size of a circle represents the diameter of estimated crown
shape. The x and + marks show cedar and pine geographic
positions by GPS measurement, respectively. The number of
correctly indentified trees was 12 out of 29 and 73 out of 89 for
pine and cedar respectively, resulting in an identification
accuracy of 41% and 82% for pine and cedar respectively. At the
same time, the methodology erroneously identified 14 pine
trees as cedars. This is probably because those pine trees

J. For. Plann. 13:187-193(2008)

(b)

Fig. 5 The truncated cone shape model of pine (a) and cedar (b)

were of small sizes, but the algorithm required them to have
bigger crowns to be correctly extracted. Regarding the trees
not extracted at all, it might be due to their lower heights
compared to the surrounding trees. Another reason might be
the high density causing nearby crowns to pose as one crown
in LiDAR points cloud. A total of 3 pine and 16 cedar trees
could not be detected at all by the methodology.

The estimated tree heights of both species were validated
with ground truth data for evaluating the usefulness of the
truncated cone shape model. The scatter plot between the
estimated height and the measured height is shown in Fig. 8.
The coefficient of determination (R?) for pine and cedar were
0.72 and 0.78 respectively. The estimated height was under-
estimated for both species. However, we concluded that, the
truncated cone shape model was not responsible for the
underestimation and it was a valid choice. This conclusion is
based on the fact that, the relationship between the estimated
and the measured height was linear. We inferred that, the
underestimation was due to overestimation of DEM, which
was confirmed from comparison of estimated DEM with
measured ground elevation DEM from DGPS. In case of a
closed canopy forest like the one in our study area, an accurate
DEM was practically difficult to achieve and accuracy
improvement would have needed a more robust interpolation
methodology.

To solve the remaining problems in this study, future
works will focus on an improved classification method from
DMC imagery, improved DEM generation and improved
extraction of crown shape from LiDAR data by the truncated
cone shape model. Contextual analysis used for classification
may increase the accuracy, since spatial resolution of DMC
imagery is quite high. In case of a closed canopy forest, DEM
with higher accuracy is needed for the methodology. Here, the
extracted crown shape could be regarded as the closest



192 Endo et al.

possible representative conical shape of the real tree crown, as represent a real tree shape would increase the overall

in reality tree crowns were edgy with irregular shapes. Thus, a accuracy.

truncated cone shape model modified to more closely Structural variables derived from more realistic tree
shapes estimated from LiDAR data, would be useful not only
for forest research but also for various other numerical
prediction model.
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Table 2 Classification accuracy of pine and cedar by using each standard ellipsoid model
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Fig. 8 Comparison between the measured tree height and the estimated tree height. (a) stands for pine and (b) stands for cedar
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CONCLUSIONS

In this study, a new methodology was examined for
simultaneous estimation of tree structural variables derived
from tree crown shape in a high density and mixed forest area
with two species from DMC and LiDAR data. Classification of
areas with pine and cedar trees was done using DMC imagery
and unsupervised classification. Through the standard
ellipsoid model fitting to CHM in corresponding classified
areas of cedar and pine, each tree top position in horizontal
plane was estimated. It was possible to estimate crown shape
and tree height of cedar and pine by a truncated cone shape
model fitting technique. As the relationship between the
estimated and the measured height for cedar and pine was
linear, we concluded the fitted models to be valid. The
underestimation in tree height was inferred to be primarily
due to overestimated DEM used in this study. Our study
demonstrated that, forest structural variables along with crown
shapes in a complex mixed forest canopy could be estimated
effectively by synergetic use of LIDAR and multi-spectral high-
resolution imagery. However, there are few remaining solvable
problems in the methodology. One way to improve the overall
accuracy could be adopting contextual analysis classification of
areas of each species. Estimation accuracy of tree height and
crown shape could be improved by using a DEM with higher
accuracy and modification of the truncated cone shape model
for more realistic representation of the crown shape.
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Quantifying Variances of Line-Intercept-Sampling Estimators

of Percentage Cover

Kaiguang Zhao™', Sorin Popescu™' and Ross Nelson**

ABSTRACT

The line-intercept sampling (LIS) method has found important applications in such areas as forest and wildlife,
ecological and biological sciences, and crop and agriculture fields. LIS is a sampling technique to make
observations along line transects in order to make inferences of area properties. The placement of transects can be
chosen in many different manners, i.e., randomly or systematically. The motivation of this study is to use LIS to
infer regional information of forestry biophysical parameters based on the linear transects measurements of a
profiling LiDAR system. However, there is no optimum method to properly derive a reasonable measure to the
uncertainty of LIS estimates. As such, the study first developed a theoretical framework to describe the LIS
estimation in two settings, one with fixed landscape configuration, and another with random configuration. The
subsequent simulation of transect observation is realized for two categorical maps: the artificial one simulated by
SIMMAP, and the real one classified from Landsat ETM+ multispectral imagery. The simulated samples were used
to test four estimators. The methodology employed in this study provides a good starting point for practically
implementing the quantification of variance estimates with LIS.

Keywords: line-intercept sampling, line-intersect sampling, profiling LiDAR, estimator, Monte Carlo

INTRODUCTION

The line-intercept method is a quite effective sampling
technique, and it has found extensive applications in natural
resource disciplines, such as the characterization of landscape
pattern and the inventory of forestry tracts. Instead of
intensive sampling over the whole study area, Line-Intercept
Sampling (LIS) only measure samples along linear transects;
the placement of transects over study sites can be done either
randomly or systematically, with fixed or varying length for
each transect, or sometimes in a prescribed configuration.
Basically, LIS is used to observe a region consisting of
randomly distributed particles or items by only sampling the
particles intercepted by transects. According to the settings of
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applications, the particles may represent different entities, i.e.,
shrubs, tree crowns, dens, lakes, plants, roads and signs, or
patches in a landscape. The particles can be geometrically
arbitrary-shaped. Many estimators have been developed so far
to extend the line transect observation into the inference of
area properties of particles, e.g., estimating the percentage
cover of certain patch type based on the length proportion of
transect intercepted with the given type of patch (KAISER, 1983;
BUTLER and McDONALD, 1983).

LIS technique has a long history and it can be roughly
dated back as early as 1868 when CROFTON (1868) discussed
the local probability of straight lines drawn at random in a
plane. CANFIELD (1941) first successfully introduced this
technique to sample range vegetation and employed the
random placement of transects and used the proportion of the
sampled transect intercepted by the vegetation as an estimate
of the ratio of the vegetation area to the whole study area.
BAUER (1943) then compared the relative efficiency of the
transect and quadrate methods of sampling vegetation for
statistical analysis based on a series of simulated plant
communities of known composition, and he showed that the
transect sampling gave more accurate results than quadrate
methods in the cases he investigated. In 1953, MCINTYRE
further developed the LIS technique by using line transects to
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estimate plant density, say, the number of plants (particles) per
unit area. Later, WARREN and OLSEN (1964) proposed a LIS-
based estimator for the volume of logging waste and
documented the first use of LIS in forestry applications.
Instead of naming it line-intercepting sampling, the authors
coined it as line-intersect sampling. The unbiasedness of their
estimator was proved to be true under certain assumptions
later by VAN WAGNER (1968). The theoretical work by KAISER
(1983) presented two generic estimators for LIS and his theory
tended to unify all the LIS results up to that time. He used
geometrical probabilities to prove the unbiasedness of the
proposed estimators, and provided examples in which his
estimators degenerated to the commonly known estimators.
KAISER’s paper (1983) proved to be one of the most appreciated
works in the literature of LIS. Recently, extensive applications
of LIS have been seen in such areas as forest and wildlife,
ecological and biological sciences, and crop and agriculture
fields (e.g., KELLER et al.,2004; KEANE et al., 2005; NELSON et al.,
2005). Recent progress of LIS sampling theory can also be
witnessed in the work of AFFLECK et al. (2005), among others.
With this study, the authors are interested in developing
an on-the-fly portable airborne laser profiling system for forest
inventory, based on an existing system called Portable
Airborne Laser System (PALS) developed by NELSON et al.
(2003). The proposed system is a profiling laser altimeter or
LiDAR (Light Detection And ranging). A laser profiler usually
emits laser pulses at near-nadir direction (without scanning)

(a)

Flight line

(b)

Fig. 1 An example of a forest canopy profile which might be
obtained via a laser profiling instrument (see also
Nelson et al., 1984)

Zhao et al.

and collects the returned pulses. The round-trip travel time of
the laser pulse can be converted to ranging information based
on the speed of light. As shown in Fig. 1, the profiling LiDAR
can measure the forest canopy height profiles along a transect
(NELSON, 1984). The schematic in Fig. 1.a suggests that two
profiles are involved to characterize the stand structure: the
top one depicting the profile of top canopy surface, and
the bottom one describing the terrain topography. Studies
found that the forest stand characteristics and biophysical
parameters can be derived from this profiling measurement
(MACLEAN and KRrABILL, 1986). Transects flown over a study
site in Fig. 2 illustrate the basic idea on how a profiler collects
samples and what the placement of transects looks like. Unlike
most current commercially available scanning LiIDAR systems
capable of continuously sampling the study area (LEFSKY et al.,
2002; PoPESCU et al., 2002; POPESCU et al., 2003), the proposed
profiler can produce only data along transects which are
typically almost parallel and 2-4km apart.

In order to infer information on the area-based variables,
LIS needs to analyze the profiling transect data. However,
before applying LIS, relevant information should be able to be
extracted from profiler altimeter data along transects,
preferably by some automatic data processing algorithms.
These may include but not be limited to such algorithms as
those for reconstructing ground topography, deriving canopy
height profiles, and stratifying the canopy height profiles into
segments with respect to the types of land cover. Central to

Fig. 2 Parallel transects flown by a profiling LiDAR (profiler)
over a study site: the dark lines are the flight lines of
the laser profiler, the background is a false-color

QuickBird image.
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this study, the stratification of profiling transects is essentially
important for the purpose of estimating percentage cover of
each land cover. To achieve this, advanced signal processing
techniques such as wavelet analysis is effective in designing
automatic algorithms. No elaboration on these aspects is made
in this paper, and details on the implementation of relevant
algorithms is planned to appear in a future publication.

Airborne profiling measurements have been used to
inventory forestry resources with LIS sampling techniques,
particularly over large areas. NELSON et al. (2005) exploited the
possibility of using over 1,300km of systematic profiling
transect measurements acquired over the State of Delaware,
USA, to do state-level multiple resources inventory by the LIS
method, and their estimates of merchantable volume fell into
the 21% of US forest service estimates at the county level , and
1% statewide. Total above-ground dry biomass estimates were
within 22% of USFS estimates at the county level and with 16%
statewide. They also used profiling measurements to estimate
the area percentage of impervious and open water area for
three counties of Delaware, and found that results were
comparable to estimates from other sources. By using the
same dataset, NELSON et al. (2005) again utilized the LIS
method to help estimate the extent of Delmarva Squirrel Fox
habitat. Their results have demonstrated the feasibility of
profiling laser measurements for regional resources inventory.
However, although their estimations are accurate enough to be
comparable to the known estimates by other means, their
report on the variance of the LIS estimates only provides an
approximation to the true variance; also, they claimed that
upward conservative
estimation of the true value (NELSON et al., 2005).

such estimated variance gives an

Because the variance or standard error of an estimator is
an indicator of the accuracy or, on the other hand, the
uncertainty of the estimator; without good knowledge of the
estimator variance, estimates will be less valuable. KAISER
(1983) gave for his estimators a definition formula of the
variance which includes two components, namely the variance
term and the covariance term. He mentioned that even in
simple cases the formula is mathematically intractable mostly
due to the unknown form of the covariance component. He
finally suggested obtaining a number () of independently and
identically distributed estimates based on m independently
chosen transects of certain length L, then pooling these m
estimates by arithmetic averaging as a final estimate and
taking the sample variance as the estimated variance. In terms
of the intractability of the formula for covariance, DEVRIES
(1986) had the same argument, and he offered a similar
formula to evaluate the variance in the cases of varying
transect length, where the length of transect is used as
weighting in the calculation. NELSON et al. (2005) restated a
successive difference estimator based on the study of
LINDEBERG (1926); and he also envisioned relying on a large
Monte Carlo experiment to obtain a valid estimate of the

estimator’s variance for the systematic airborne LiDAR
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samplings. As such, this paper attempts to investigate the
uncertainty of LIS estimates by quantifying its variance, which
will serve as a crucial step in appropriately analyzing and
interpreting profiling LiDAR measurements.

Specifically, the paper will use both the computer-
simulated landscape and the real land cover map classified
from a Landsat ETM+ image to simulate transect observations
in a systematic manner. From a series of simulated data, four
estimators for cover percentage of certain patch type are
tested and their variances are also constructed. The paper
simplifies the demonstration by only considering a binary
landscape, i.e., background and patches of interest for the
computer-generated landscape, and forestry/non-forestry for
the land cover map. Furthermore, for practical conveniences,
the following discussion will term pixels of value 1 as forestry
and 0 as non-forestry in both the artificial and real landscape
maps. The results can be easily generalized to the multiple-
type cases. Also, this paper formulates a theoretical framework
to evaluate estimator variances under certain assumptions.

METHODS
Computer-simulated Landscape

A landscape simulation package SIMMAP, which
implemented a modified random simulation method (SAURA
and MARTINEZ-MILLAN, 2000), was utilized to generate a
categorical landscape map with 2 patch types and an extent of
900 x 900 pixels (Fig. 3). The default values for initial
probability and neighborhood criteria were used, and the
minimum patch size was set to 90 pixels. The forest cover
percentage is the main metric of inference interest.

Fig. 3 The computer-generated categorical map and a mask
of the boundary of study area, and the resulting
landscape after applying the mask to the original
square region.
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Usually, the shape of the study region, i.e., a county or
state, may be arbitrary. Hence, in order to mimic reality, a
mask was arbitrarily delineated on-screen in ENVI (ITT Visual
Information Solutions, Inc.) and used to clip out the region of
interest, as shown in Fig. 3.

Classified Map From Remotely Sensed Data

A Landsat ETM+ multispectral image over Huntsville,
East Texas, USA, was used for this study. The unsupervised
ISO-DATA algorithm was used to classify the image into 7
classes, which were then grouped into two categories: forest
and non-forest. Because the inference of interest does not
depend on the exact type of classification and the absolute true
value of relative to the real landscape is of no interest in this
study, the step of accuracy assessment was ignored. Likewise,
a mask was applied to discard the pixels out of a delineated
boundary in order to mimic a natural shape of study area. The
resulting map is depicted in Fig. 4.

Calculating the Total Area of a Given Class

To simplify the illustration, again it is assumed that the
landscape contains only two categorical classes, i.e., non-forest
and forest. The interest is in estimating the total forested area.
In practice, when a profiler system is flown, the flight direction
is typically set and fixed; the sampling transects are parallel
and spaced almost equally. A coordinate system was chose
such that the x axis is perpendicular to the direction of
sampling transects and the y axis is selected as the tangent to
the left-most boundary (Fig. 5). For a given transect at x, its

Fig. 4 The classified Landsat ETM+ image with two classes
(green for forest and black for non-forest), and a mask
of the study area boundary, and the resulting
landscape after applying the mask to the original
square region.
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length I(x) is equal to the distance between the upper and
lower boundary points connecting the transect, excluding the
portion that may lie outside the study area, if any ( i.e., the
second transect from the left in Fig. 5); and the proportion of it
intercepted by forest patches is denoted as 7(x). Note that a
transect may intercept many patches. Then, the total area of all
forest patches can be evaluated by:

a= [ 7 @) () dx 1)

where s represents the span of study area along x axis.

To clarify notations, lowercase letters will denote variables
or functions that are fixed or prescribed, while the uppercase
is used to denote a random variable or function.

Estimators when the Configuration of Landscape is Fixed yet
Unknown

Before investigating a study site, its extent is usually
known by referring to archived data source, most likely a GIS
database. In addition, suppose that the orientation of all
sampling transects are the same and already determined.
Typically, this is the case for the profiling LiDAR survey.
Hence, /(x) is known and can be calculated. However, the r(x),
which is the proportion of transect intercepted by the patches
of a certain type, e.g., forest, is fixed for a given study site, but
remains unknown to investigators. If the placement of
transects is uniformly random over the x-direction span [0, s]
and the property of 7(x) is unknown, the following estimator d,
can be effective:

v

\/1" I(x)
|
i
|
I
i
I
I
I
I
I
|

Fig. 5 A hypothetical region of study where the black solid
lines are transects for LIS and will be used to infer
information on the colored patches, i.e., the cover
percentage. The transect at x touches the upper and
lower boundary points of the region, and has a length
of I(x); the transect intercepts with patches, and
denote the proportion intercepted to its total length is

r(x).
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where 7 is the number of transects observed, and the variance
is given as,
2
Var [ax] = 5 Vari[r (X) 1 (0]
3)
L
n

sfrz(x)lz(x)dx— (fr(x)l(x)dx)zl

where Vary[r(X){(X)] means the variance of »(X)!(X) when
assuming X is uniformly distributed, i.e., X~1/s. Since the
above variance formula requires evaluating r(x) over [0, s], it
cannot be used directly. Alternatively, the sample values of »(x)
at the observed transect should be substituted to calculate the
sample variance of 7(x)l(x) as the estimated variance, that is,

M) 1) ~r @I @)

i=1

Varmla| = A =1
where 7 () [ ()=2[7 (x:) l (x:)]/n is simply the sample mean.

Intuitively, the longer [(x), the more contribution to the
total area it is supposed to bring. Rather than being randomly
placed, transects can be located by the probability of I(x)/m,
where m is the total area of the whole study region. This
means that there are more transects placed over x’s with larger
[(x). According to such a design, a natural estimator should be,

. ir(xi)
a=mfr(x)%dx=[zz=m—":'n ®)

where m, again, is the total area of the whole landscape such
that m = f [ (x) dx and the corresponding variance will be,
0

Var [a.] = mnj Vari|r (X)]

m[r@i@d— ([ dx)z o

=
-n

where Variamlr(X)] is the variance of r(X) by assuming
X~1(x)/m. Similarly, the observed samples of r(x) can be used
to obtain an approximation to the true variance, and it follows
that,

nglr(xf) -r@)
nn—1)

Var la.] = (7
Estimators when the Configuration of Landscape is Supposed
to be Random

In contrast to the aforementioned setting, here the
configuration, i.e., r(x), is supposed to be an unknown yet
random function of x and was denotes as R(x). Consequently,
the total area of forest cover (patch type of interest) is a
random variable instead of an unknown constant. It can be
computed by the counterpart to Eq. 1,
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A :j'?e @) I ()= =E[A] :f}zk(x) 1 (x) dx ®)

where . (x) is the mean function of R(x), and in most cases
may be not a constant function. Of particular note is that
mathematically R(x) cannot be a Gaussian random function
because for any x, R(x) is bounded over [0, 1]; however, for
practical convenience, R(x) may be approximately gaussian.

In this random setting of landscape configuration, the
corresponding parameter of interest is E[A], i.e., the mean of
A. To simplify, assuming that R(x) has a mean z independent
of x, the E[A] and Var[A] then can be obtained respectively by:

ﬂ.¢=ﬂxfsl(x)dx=myx 9
Var (14) =ff”c',e(x)1(x+xl)1(xl) dxd, 10)

where Cg(x) is the covariance function of R(x), and Eq. 10
holds if and only if R(x) is widely-sense stationary, which, in
most cases, should not be too rigid a requirement. By further
assuming the mean-ergodicity of R(x), a reasonable estimator
of s can be expressed as,
m R (x)
il $=1

Ha :mﬂn = 7 (11)

and its variance is,
~ ’lrl2
Var [fa1] = —n—zl'- bIg 12)

where again, m is the area of whole landscape, R(x))’s are
the sampled value at n transects that can be either
systematically or randomly placed; and X, is the variance-
covariance matrix of R(x;), and can be constructed from Cg(x)
which, for the (i,j) entry of X, gives Ce(jx: —x,|). Unfortunately,
the structure of Cgp(x) is usually unknown; therefore, in
practice prior knowledge about Cr(x) may be entailed.

Another estimator of s is given in Eq. 11, and Eq. 12 is
for the associated variance.

SR () 1 (x)
I - (13)
Var [,21.4‘2]
- Z_Z[z(xl),z(xz),...,z(x")]zk[z(x,),z(xz),...,z(x")]’
(14

The unbiasedness of /., . depends on both the properties of
R(x) and the sampling schemes of x. For instance, if R(x)
assumes a constant mean, /., » iS unbiased when x’s are
suppose that s(x) is
dependent on x, /14 » is biased when transects are observed at
fixed locations x's.

randomly sampled; conversely,
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Simulation Schemes

First, systematic samples of transects, which are observed
in a manner similar to the profiling LIDAR, are drawn
randomly. The spacing between adjacent transects are
purposely designed to be randomly distributed around the
average spacing since the flight lines of profiling LiDAR are
not exactly equally spaced. However, randomly sampled
transects are employed to obtain more appropriate Monte
Carlo estimates of uncertainty; specifically, for each of the
computer-generated landscape and classified categorical map,
a range of transect numbers are used; and at a given number
of transects, 30 realizations are simulated. The sample
variance of each 30 realizations is calculated to be compared
with those obtained by the proposed variance formula.

RESULTS

The proportion of transects intercepted by forest patches,
r(x), is plotted against x in Fig. 6a and 6b respectively for the
artificial landscape generated by computer and the real
landscape created from ETM+ imagery. The curves suggested
that in both cases, the 7(x) appears to be randomly fluctuating
and there exists some spatial correlation to a certain degree as
also shown in Fig. 7a and 7b which show the sample
covariance function calculated from the corresponding r(x)’s.
It is clearly seen that the correlation monotonically decreases
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(b) R(x) for the classified Landsat ETM+ Image

Fig. 6 The proportion of transects intercepted by forest

patches, r(x), is plotted against x (pixels) in Fig. 5a
and 5b respectively for the artificial landscape
generated by computer and the real landscape created
from ETM+ imagery.
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as the lags increase. These two sample covariance functions
were plugged as Cr(x) into the formula in Egs. 10, 12, and 14
developed above, to compute the sample variance of the
estimators.

Fig. 8 shows the forest cover percentage estimated by
four different estimators, at different choices of transect
number. The forest cover percentage is simply the ratio of
estimated forest area to the total area. The four estimators are
respectively the one used by NELSON et al. (2005), and three of
the four discussed above except the second one. They are
respectively denoted by “Nelson” or “N”, “al”, “Al1” and “A2”
as labeled in the legends of Fig. 811. The plotted values of
estimates in Fig. 8 and 10 only represent one randomly
selected realization out of 30. The true forest percentages are
0.3684 and 0.2281 for the simulated artificial and classified real
landscape maps, respectively. In both cases, the estimated
values tend to come closer to the true value as more transects
are observed. Moreover, an overall trend of overestimation is
observed for all the four estimators (Fig. 8a) in the case of
simulated landscape, although occasionally the estimates are
lower than the true value at some transect numbers, and the
estimator of “N” and “Al1” seem to consistently give the
estimation closest to the true value. On the other hand, an
opposite trend was noticed for the classified ETM+ image
where overall, all four estimators were apt to underestimate
the percentage cover.

A way of calculating estimator variance is to take the
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(a) Sample covariance function for the computer-generated landscape
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(b) Sample covariance function for the classified ETM+ image

Fig. 7 The sample covariance function calculated from the
r(x)’s of Fig. 5, respectively for the artificial landscape
(a), and the classified land cover map (b).
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sample variance of 30 realizations. This is quite often
employed in Monte Carlo simulation and supposed to offer a
quite reasonable approximation to the true variance inherent
in the sampling design. Fig. 9 suggests that for both
landscapes the variances of four estimators almost coincide;
but, to be more precise, for the simulated landscape, the
estimated standard errors (SE) from the simulation with
“Nelson” estimator is the lowest with “al” and “A2” providing
the highest estimates, while for the classified image, the
estimated SE of “Nelson” and those of “al” and “A2” are very
close especially at a large number of transects. In addition,
another way to calculate the estimator variance is to directly
use the aforementioned formula which is derived under
certain assumptions, with results given in Fig. 10. As with the
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Fig. 8 The forest cover percentage estimated by four
different estimators as a function of the number of
transects used. The four estimators are the ones used
by NELSON et al. (2005), the first estimator al
discussed in “Estimators when the configuration of
landscape is fixed yet unknown”, and the two
estimators Al and A2 discussed in “Estimators when
the configuration of landscape is supposed to be
random”. (a) is the case for artificial landscape, and
(b) for the classified remote sensing imagery.
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Monte Carlo simulated estimates, the SEs calculated with
variance formula appear to follow a similar trend except that
“al” and “A2” have different estimates due to the difference in
assumptions. Moreover, in contrast to the decreasing variance
with more transects for Nelson’s estimator and al, Al and A2
exhibit an almost invariant pattern.

To further compare the two ways of computing variance,
the ratio of the formula-derived SE to the estimates by Monte
Carlo simulation is presented in Fig. 11. Assuming that the
simulation-derived sample variance is a more reasonable
estimate, the closer to 1 the ratio approaches, more valid the
formula for variances is, or a more reasonable assumption is
made as to 7(x). As shown in Fig. 11, the resulting plots reveal
that in the case of simulated landscape, the ratios fluctuated
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Fig. 9 The estimated variance by sample variance of the
simulation: (a) is the case for artificial landscape, and
(b) for the classified remote sensing imagery.
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Fig. 10 The estimated variance calculated by the variance
formula: (a) is the case for artificial landscape, and
(b) for the classified remote sensing imagery.

around 1.0 for all four variance estimators, e.g., with a range
from 0.72 to 1.41 for the Nelson’s estimator; However, for the
real landscape of classified image, “A1” and “A2” provided
inflated estimates relative to reference values of Monte carlo
simulation, with “A2” producing the most upward estimates
and “Al” following next. In contrast, Nelson’s estimator and
“al” have fluctuating ratios more closer to 1, which suggests
that in this case these two estimators offer more realistic
estimates of variance.

DISCUSSIONS AND CONCLUSION

By mimicking the way a profiling LiDAR collects linear
transect observations, the simulation of random realizations
supposes to offer the possibility of examining the variability of
simulated samples as well as quantifying the variance of a
given estimator for a certain quantity. In this study, estimators
for the percentage cover of given classes is tested, more
importantly, the variance of these estimates are obtained by
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Fig. 11 The ratio of the formula-derived variance (shown in
Fig. 9) to the sample variance of simulation (shown in
Fig. 8) as a function of number of transects used. The
closer to 1 the ratio is, the more valid the variance
formula is. (a) is the case for artificial landscape, and
(b) for the classified remote sensing imagery.

either taking sampling variance of the simulation or using the
proposed formula as expressed in Egs. 4, 7, 12 and 14.

Two settings for deriving the estimator and variance
formula are assumed, when the landscape configuration is
fixed and unknown, or random. Instead of using geometrical
probability as in KaisEr (1983), in this study, Monte carlo
integration approach is refereed to for developing estimators
of percentage cover; and the basic ideas are illustrated by Eqs.
1, 2, 5 and 8. The estimator (d, or al) of the first setting appear
to be quite similar to the one used by NELSON et al. (2005), but
difference exists that d, is an estimator for area of interested
patches which must be divided by the already known value of
total area to obtain percentage cover, while the estimator in
NELSON et al. (2005) directly provides estimates of percentage
cover. The estimators for the random setting, however, tend to
have a much more inflated variance that’s much larger than
the reference value of sample variance obtained by simulation;
and this may either be caused by treating the systematical
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sampling as random when evaluating the variance, or be an
artifact of introducing randomness to depict the fixed but
unknown landscape, i.e., 7(x). Furthermore, in practice the
inference of the second setting can be only made for the mean
since R(x) in itself is assumed to be random. As such, the
simulation of drawing transects from a fixed landscape is not
too methodologically rigorous; but this appeared not to be a
problem as demonstrated by the results for the simulated
landscape.

In fact, the apparent disparity between the formula-based
and simulation-based variance estimates for “A1” and “A2”, as
indicated in Fig. 11. b for the classified image, can be most
likely attributed to the departure of R(x) from the underlying
assumptions made for deriving the variance estimators. It
becomes clear that a drift is present in 7(x), as depicted in Fig.
6. b, which shows a high tail at large x; as a result, the
incorporation of this overall trend into the calculation may
mislead the estimation of covariance function as in Fig. 7.b
since covariance function is supposed to capture only the
random components of underlying stochastic process.
Consequently, the inappropriate knowledge about covariance
function will result in unreasonable variance estimates, as also
noted for the variance estimator in Kaiser (1983). In this study,
estimates of covariance function were computed from r(x).
However, in practice, 7(x) remains unknown and is of inference
interest based on the available samples observed at transects.
Because of the limited number of transects, it is less possible
to do estimation on covariance function using only these few
samples. This prevents the effective use of variance estimators
corresponding to the random setting. A possible remedy is to
fit a parametric covariance model of known form to the
available observation; specifically, the parameter relevant to
the magnitude is simply estimated by the sample variance of
r(x)’s, and parameters relevant to effective correlation
distance may be inferred by analyzing the observations along
the transect direction (i.e., the y axis in Fig. 5), due to
continuous measurements available in this direction. However,
the development of an efficient and reliable fitting procedure
needs further investigation in future studies.

In our derivation, it is assumed that the geometry of study
areas is known, which means that given a direction, /(x) can be
calculated. This is typically the case as GIS layers about study
areas are often readily available prior to the flight mission. By
changing the observation direction, not only /(x) but also »(x)
changes; therefore, the orientation of transects has great
influence on the properties of relevant estimation; and also
there may exist a preferable direction for high-precision
estimates. For example, an extreme scenario is hypothesized
in Fig. 12 where the dotted half of the square region
represents forested area. If a single vertical transect is
randomly observed (the left of Fig. 12), the sampled
percentage can take either 1 or 0 with equal probabilities;
however, when observed horizontally, the true value 1/2 is
always observed. To this end, prior knowledge, if available,
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can be used to guide the selection of appropriate direction;
otherwise, the direction that could minimize the variability of
[(x) may be an option. In fact, when /(x) is constant, all the four
estimators as well as the one used in Nelson et al. (2005)
essentially produce the same estimates, but they do have
varying variance estimates due to the different assumptions. In
deriving the LIS estimate or the corresponding variance
estimator such as @ and /., only the transect length at
observed locations is used. To compensate this, the primary
author suspects that incorporating all information on [(x)
should increase the precision of estimates.

As a final note, although the aforementioned derivation is
based on binary categorical landscapes, the proposed
estimators can be equally applied to estimate percentage cover
for landscapes with multiple categories without any
modification. Moreover, they can also be extended for
estimating the mean value of variable that varies continuously
across the study area, e.g., regional biomass. To illustrate this
point, suppose that the variable is a spatial-explicit function
denoted by f(x, y); then, by assuming the same geometry as in
Fig. 1, the mean value of the variable averaged over the study
area is simply obtained by an integration as follows,

=) [ ") dyie =5 ff,,(x) 1(x) dx (15)

where f,(x) = fu j}f'(;f y) dy. y:(x) and y.(x) are the y coordi-
nates respectively for the lower and upper boundary points at
x, and m is the size of study area. In eq. 15, £, (x) plays the same
role as the r(x) in eq. 1. Hence, after the samples of f,(x) are
observed at a number of transects that are parallel to y, f can be
estimated by wusing the same estimators as previously
discussed.

The logic to formulate the estimators for LIS is a little
different from the mostly used geometrical probability
approach by Kaiser (1983). Hence, it still remains undeter-
mined whether a logically sound reasoning line is followed to
deal with the LIS problems in this study, or not. Nevertheless,
the attempt to rely on Monte carlo integration random
simulation for evaluating LIS estimators points a bright
direction towards the ease of practical implementation of LIS
schemes other than the mathematical intractability.

A
|
I
1
1
1
|
T

Fig. 12 An extreme hypothetical landscape of square shape
where the dotted half represents forested area, for
the purpose of demonstrating the effects of transect
orientation : vertically-placed transects (the left) and
horizontally-placed transects (the right).
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Stemwood Volume Estimates for a
Mixed Temperate Forest using Satellite LiIDAR

Jacqueline Rosette™', Peter North** and Juan Sudrez™’

ABSTRACT

Data from the Geoscience Laser Altimeter System (GLAS) aboard the Ice Cloud and Land Elevation Satellite
(ICESat) were used to explore the potential of satellite LiDAR for the estimation of forest parameters such as
vegetation height and stemwood volume. This was carried out for the Forest of Dean, Gloucestershire, UK, a semi-
ancient, highly mixed, temperate forest. Previous research suggests use of Waveform Extent (the difference of
alternate model fit Signal Begin and Signal End) and a Terrain Index (maximum minus minimum elevations from
a 7x7 matrix, 10m resolution DTM) to provide the most robust estimate of maximum canopy height. These
waveform-based maximum vegetation height estimations were used to investigate the potential of satellite LIDAR
for the estimation of stemwood volume for the tallest species within each footprint. Relationships were established
with predictions of stemwood volume calculated from Forestry Commission yield models. These equations
succeeded in explaining 68% of variance with 88.7m*/ha RMSE for coniferous species and R* of 0.65 with 68.2m*/ha
RMSE for broadleaf species. The ability of satellite LIDAR waveforms to account for stemwood volume within
mixed composition stands was also investigated. Area under the waveform canopy return, maximum canopy height,
dominant canopy height and height of cumulative energy percentiles were considered. The height of the 90"
percentile of cumulative energy was found to best represent the weighted stemwood volume of heterogeneous
stands producing R* of 0.57, 92.3m’/ha RMSE and R* of 0.59, 67.5m?/ha RMSE for stands dominated by coniferous
and broadleaf species respectively. The results of this local study indicate the potential for similar methods to be
applied to regional or national scales.

Keywords: ICESat, GLAS, stemwood volume, vegetation height, satellite LIDAR

For the purposes of forest management, quantifying

INTRODUCTION

The necessity of quantifying and monitoring changes in
carbon stock has been recognised in international agreements
such as the Kyoto Protocol to the United Nations Framework
Convention on Climate Change 1997 (UNFCCC, 2007; FOREST
RESEARCH, 2006). Estimating this requires prior knowledge of
carbon dispersal and, as an effective carbon sink, understand-
ing distribution of vegetation volume.

timber volume is of importance for commercial viability and
assessing stand processes such as regeneration. Additionally,
height is an important input parameter for yield model
estimates (EDWARDS and CHRISTIE, 1981; FORESTRY COMMISSION,
2006).

Earth observation plays a significant role in contributing
to the knowledge
biophysical properties. Optical remote sensing has been
shown to provide indirect associations using reflectance

of vegetation distribution and its
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properties for Normalised Difference Vegetation Index (e.g.
DEFRIES and TOWNSHEND, 1994; Los et al., 1994; SELLERS et al.,
1994) and Leaf Area Index (e.g. Los et al., 2000; MYNENI et al.,
2002) although there are difficulties associated with use of
reflectance alone (NOrRTH, 2002). More direct assessment
using the physical properties of vegetation and interactions
between canopy structure and photons detected by the sensor
have been demonstrated through radiative transfer modelling
(NORTH, 1996; NI-MEISTER et al., 2001; KOTCHENOVA et al., 2003).

Active instruments have been exploited to estimate
vegetation height and volume using radar (BALTZER et al., 2003;
GAVEAU et al., 2003; TANSEY et al., 2004; BALZTER et al., 2007)
and more recently LIDAR (Light Detection and Ranging)
systems.

Potential for biophysical parameter estimation at local
scales has been shown for discrete return airborne laser
scanning (e.g. HYYPPA et al., 2001; N&SSET, 2002; PATENAUDE et
al., 2004) and waveform recording devices (LEFSKY et al.,
1999a; LEFSKY et al., 1999b; HARDING et al., 2001; DRAKE et al.,
2002; DRAKE et al. 2003). The benefits of combining spectral
data/ aerial photography and airborne lidar data have also
been shown (e.g. HiLL and THOMPSON, 2005; SUAREZ et al.,
2005). Additionally, NELSON et al. (2004) and NELSON et al.
(2006) have shown the potential for USA State-wide
documentation of commercially viable volume and total above
ground biomass using first return airborne LiDAR profiling.
Discussions relating to full waveform, satellite LIDAR systems
are provided by BurroN (1989), GARDNER (1992), HARDING et
al. (1994), BRENNER et al. (2003) and HESE et al. (2005).

An important limitation of remote sensing estimates is

Rosette et al.

that direct account is only taken of above ground biomass
whilst root systems would make a substantial contribution to
carbon storage. However, JENKINS et al. (2003) have shown a
means to overcome this using USA-wide allometric equations
for estimating above ground biomass for broad species classes
and have found generalised relationships accounting for
vegetation component biomass (root, foliage, stem bark and
stemwood). This potential has also been demonstrated by
FANG et al. (1998) who have related stem volume density
(m®/ha) to stand biomass (Mg/ha) comprising both above and
below ground biomass.

The objectives of this study are therefore to explore the
use of ICESat/GLAS data for forest inventory and to develop
straightforward, repeatable methods for estimating vegetation
height and stemwood volume that can be applied to regional
and national scales. In particular, we examine how existing
methods for stemwood volume estimation based on yield
models compare with estimates derived from satellite LiDAR.
We assume a sample of height data is available to calibrate
LiDAR height estimates.

METHOD
Study Site

The Forest of Dean, Gloucestershire, UK (Fig. 1; left) is a
semi-ancient, heterogeneous, temperate forest, bordering
Wales and extending over an area of approximately 11,000
hectares (RoYAL FOREST OF DEAN, 2006). The Forest is
managed by the Forestry Commission of Great Britain a

Fig. 1

(left) Map of Forestry Commission Woodland in central and southern England with the

Forest of Dean indicated. Source: MAGIC (2007). (right) 1:25,000 scale map of the Forest of
Dean overlaid by Forestry Commission sub-compartments and representation of a section
of ICESat footprints. North is orientated to the top of the image (2km * 4km area shown).

Source: ORDNANCE SURVEY (2006)
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division of which, Forest Enterprise, maintains a sub-
compartment database of management units throughout the
area. These sub-compartments (Fig. 1; right) are comprised of
discrete, irregularly distributed components with known
species, physical conditions and management criteria
(FORESTRY COMMISSION, 2006). Thus for each footprint location,
the associated sub-compartment and constituent components
permit reference to be made to relevant yield models
(EpwarDS and CHrisTIE, 1981). This enables prediction of
vegetation growth for the given conditions.

The ICESat ground-track crossed the Forest between
latitude 51.74° N and 51.88° N and longitude 2.54° W and
2.51° W. Of the stands sampled by ICESat/GLAS footprints,
the most commonly occurring species were Norway Spruce
(Picea abies), mixed broadleaf species, Oak (Quercus spp),
Corsican Pine (Pinus nigra var maritima), Douglas Fir
(Pseudotsuga menziesii), Scots Pine (Pinus sylvestris) and
European Larch (Larix decidua). Vegetation was predomi-
nantly still in leaf at the time of GLAS data acquisition. Only
footprints falling within the contents of the Forestry
Commission sub-compartment database were studied and
additionally, those footprints which partially traversed urban
developments were excluded as surface features would
contribute to waveform structure and could not be isolated.
This resulted in a total of 69 waveforms analysed.

Yield Models

Forestry Commission yield models were used to calculate
stemwood volume coincident with ICESat footprints. The yield
models are empirically-derived and estimate growth over time
accounting for habitat conditions and consequently differing
growth characteristics between and within species groups.
Initial spacing of individuals, species, yield class (defined as an
annual increment in m®/ha/year) and management (e.g.
thinning regime) are used for each model to estimate
vegetation parameters which comprise top height, individual
tree volume, volume per hectare and mean diameter at breast
height by age.

Stemwood volume is defined by EpWARDS and CHRISTIE
(1981) as living tree over-bark volume (m®/ha) which, for
coniferous species, includes main stem timber of 7cm
diameter or greater. This was estimated for sub-compartments
sampled by each ICESat footprint making reference to the sub-
compartment database and relevant yield models. Two
measures of stemwood volume are used in this study:

Single species stand volume

The first uses yield model stemwood volume calculated
for the tallest species within each footprint, determined from
the sub-compartment database. Using one species, identifiable
from the waveforms (maximum canopy height estimations),
aims to indicate the potential for stemwood volume estimation
within pure stands. Footprints were then distinguished accord-

J. For. Plann. 13:205-214(2008)

ing to whether the tallest species was broadleaf or coniferous
to determine whether this would result in an improved
correlation with waveform parameters (described in “Wave-
form estimators of stemwood volume” section).

Mixed stand stemwood volume

Only six footprints crossing the Forest of Dean sample
sub-compartments containing a single species and further-
more several footprints cross more than one sub-compart-
ment. Therefore the second measure represents mixed stands
and uses a weighted stemwood volume calculation, taking
account of the percentage composition of species within all
components of each sub-compartment covered by footprints.
Footprints were differentiated according to whether broadleaf
or coniferous species formed the greatest percentage cover.
Relationships with the waveform parameters discussed above
were then calculated.

ICESat/ GLAS Data

The Ice Cloud and land Elevation Satellite (ICESat)
carries the Geoscience Laser Altimeter System (GLAS) and
provides near global coverage of between =86° latitude.
Lasers are operated intermittently, typically three times per
annum during February-March, May-June and October-
November. ICESat orbits at an altitude of 600km and
simultaneously emits 1,064nm and 532nm wavelength pulses
at 40Hz. This produces a series of elliptical footprints with 64m
average equivalent circular area diameter and 172m intervals
between consecutive footprint centres. Further information
regarding the mission is discussed by ZWALLY et al. (2002),
BRENNER et al. (2003), KicHAK (2003), ABSHIRE et al. (2005),
ScHUTZ et al. (2005) and NSIDC (2006).

Data from GLAS release V026; level 1A product GLAO1
(Global Altimetry data) and level 2 products GLAO6 (Global
Elevation data) and GLA14 (Global Land Surface Altimetry
data) captured on 22" October 2005 at 8:28am (ZWALLY et al.
2006), were used for this study. These products provide
respectively the raw waveform, geographical co-ordinates of
footprint locations and a model fit to the waveform using the
sum of six Gaussian peaks (Fig. 2b). Near infrared waveforms
have been used for the study discussed in this paper. The
GLAS Visualizer Tool (10" April 2006 version) was used to
explore the waveform, as well as to identify and export
relevant parameters.

LiDAR waveforms consist of the returned energy from
intercepted surfaces at and above ground level within the area
illuminated by the laser pulse. The time for energy from the
emitted pulse to be returned to the sensor enables elevations
of above-surface features within the footprint to be calculated.

For vegetated areas of significant relief, signals from
ground and vegetation elevations may be combined within the
returned waveform. This is a particular challenge for broader
footprints where the likelihood is increased. Footprints



208

88591750614

Rosette et al.

Gaussians for alternate model fit 885917586_14

88 T T 88 T
1 Raw returned waveforn ——— Hodel alternate fit
q Hodel alternate fit —— Gaussian 1 ——
‘; Signal Begin - alternate fit ——— Gaussian 2
7 First local maxinun —— 78 Gaussian 3
4 Doninant canopy height Gaussian 4 ——
3 Gaussian Peak 2 —— Gaussian 5
i Gaussian Peak 1 —— Gaussian 6 ——
L b Signal End - alternate fit 60 - J
¥
8
56 - 50 -
3 *[\ z
fal — — 3w T
» 3 —
36 38 |
28 28 . —
(7§ o { . —— — — o 18 +
° " N " " 8 L . .
8.25 8.5 8.75 1 1.25 1.5 e 0.25 8.5 8.75 1 1.25 1.5
a) volts b) volts

Fig. 2 a) A bimodal waveform typical of vegetated footprints, illustrating key waveform parameters. b) Alternate model fit

decomposition; the sum of six Gaussian peaks.

containing vegetation overlying a ground surface of low relief
are expected to produce a bimodal LiIDAR waveform
consisting of a narrow peak pertaining to topography and a
broader, more complex return determined by responses from
vegetation (Fig. 2). The waveform structure relating to the
vegetation return may be considered a function of vegetation
volume (surface area of canopy elements) as well as
reflectivity at the scattered wavelength.

The work presented in the paper aims firstly to identify an
appropriate means of estimating maximum canopy height from
satellite LiDAR waveforms. This estimate is then used to
identify the region of the waveform attributable to the
vegetation. Several methods of estimating stemwood volume
from GLAS waveforms are subsequently explored and
compared with Forestry Commission yield model predictions.

GLAS Waveform Parameters

Canopy height

Key features within waveforms can be identified with the
aim of facilitating interpretation (Fig. 2). Signal Begin and
Signal End positions are assigned where a background noise
threshold is exceeded and represent respectively, the highest
canopy surface and lowest ground elevations within the
footprint. The distance between these limits is referred to as
Waveform Extent (HARDING and CARABAJAL, 2005; LEFSKY et al.,
2005).

Adapted from LEFSKY et al. (2005), a Terrain Index for
each footprint location was calculated. For the purposes of this
study, this consisted of the difference in metres between the
highest and lowest elevations within a 7 X7 matrix of a 10m
resolution DTM (ORDNANCE SURVEY, 2006) about the footprint
centre.

Field tree height measurements at nineteen footprint

locations were conducted in June 2006. These comprised eight
inclinometer measurements of the tree with largest diameter
at breast height, one within each 45° segment of 35m radius
about the footprint centre.

Removal of the effect of topography from the Waveform
Extent is anticipated to provide an estimate of maximum
canopy height within a footprint. Waveform Extent and Terrain
Index were therefore used to establish a relationship with the
greatest of the eight tree height measurements for each
footprint.

Previous work (ROSETTE et al. in press) demonstrated
significant correlation between waveform estimates of
maximum canopy height using Waveform Extent (WE) and
Terrain Index (71) with field measurements (H) taken at
footprint locations.

Equation (1) was found to explain 90% of variance and
produced RMSE of 2.86m for the Forest of Dean.

H =1.0208*WE —0.7310*T1 1)

Estimated maximum canopy heights resulting from this
multiple regression equation are hereafter referred to as Rwr

HARDING et al. (1998) and NI-MEISTER et al. (2001) note
issues associated with allocation of the Signal Begin position
due to the characteristics of the waveform Leading Edge
(representing uppermost canopy variability). Research pre-
sented by LEFSKY et al. (2005) succeeded in improving
correlation with maximum field height when additionally
incorporating the waveform Leading Edge parameter,
increasing R* from 0.59 to 0.69 and decreasing RMSE from
4.85 to 4.21m for sites within the Great Smoky Mountains
National Park, Tennessee, USA.

As part of this current study, the waveform leading edge
and upper canopy variability were calculated to determine
whether either may improve on the estimation of this
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maximum canopy height based on methods reported by
LEFSKY et al. (2005). For the Forest of Dean, neither the
uppermost height difference between Signal Begin and the
first local waveform maximum, nor the upper canopy height
variability between Signal Begin and the position of the
maximum canopy peak resulted in statistically significant
coefficients.

Therefore results using equation 1, substituting Wave-
form Extent and Terrain Index values for each footprint, were
subsequently taken to be the most robust maximum canopy
height estimations (Rwr) and are used in later methods of
estimating stemwood volume and identifying waveform
parameters.

Waveform estimators of stemwood volume
Several waveform parameters were explored as potential
indicators of stemwood volume:

® Maximum canopy height

Use of maximum canopy height estimations (Rwr)
described above were examined. The square of these values
(Rwr)* were also considered as an improved relationship had
been previously achieved by LEFSKY et al. (2005).

e Height of cumulative energy percentiles

The waveform estimate of maximum canopy height (Rwr)
was used to locate the portion of the waveform representing
the vegetation return. Within this region of the waveform,
percentiles of cumulative energy (adapted from HARDING et al.,
2001) were calculated and the heights at which the 50*, 75",
80™, 90™ and 95™ percentiles occurred were used to estimate
stemwood volume.

® Dominant canopy height

The height above the ground surface to the canopy return
peak was named the dominant canopy height and was
calculated by multiple regression using the Terrain Index
presented in “canopy height” section and the elevation
difference between the Signal End position and the elevation of
the canopy return peak.

® (Canopy waveform area

An alternative means of attributing waveform structure to
volume of intercepted vegetation was investigated using the
area under the canopy return. This was achieved by removing
the ground surface contribution from the waveform. Two
methods were explored, the first of which used the location of
the ground peak represented by either Gaussian Peak 1 or 2,
whichever demonstrated greatest amplitude (ROSETTE et al.
submitted). If the ground peak was allocated to Gaussian Peak
1, the sum of the areas beneath Peaks 2-6 was assumed to
represent canopy volume, whilst volume was estimated as the
total area of Gaussian Peaks 3-6 if Peak 2 was designated the
ground return (Fig. 2b). The second method calculated the
area beneath the waveform between the alternate fit signal
begin position to the upper limit of the Terrain Index elevation.

RESULTS
Tallest Species Stemwood Volume Estimates

Regression analysis was carried out using the parameters
described in “Waveform estimators of stemwood volume”
section with yield model stemwood volume estimates (“single
species stand volume” section). These results are shown in
Table 1.

Table 1 Tallest species stemwood volume estimates

Waveform parameter Tallest species R Intercept Coefficient ~ RMSE (m®/ha) Number
Coniferous 0.68 NS 13.8 88.7 55
Maximum canopy height (Rwr) Broadleaf 0.65 NS 8.27 68.2 18
Combined 0.60 NS 12.8 98.7 69
. 80.0
Coniferous 0.63 0.39 96.0 55
p > 0.001
Rwr)® Broadleaf 0.57 NS 0.31 80.0 18
73.7
Combined 0.55 0.37 104.4 69
p > 0.001
) ) Coniferous 0.50 NS 174 105.3 52
U g Broadleaf 0.64 NS 10.5 710 16
cumulative energy
Combined 0.46 NS 16.2 111.2 65

Comparison of tallest species stemwood volume with estimation results using waveform parameters. Groups include common footprints
classified as un-vegetated. The number of footprints used differs due to missing values, discrepancies between Waveform Extent and estimated
maximum height or anomalies such as ‘negative’ energy within height bins. Coefficients and intercepts are statistically significant (p < 0.001)

except where stated. NS indicates not significant.

J. For. Plann. 13:205-214(2008)
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Fig. 4 Relationship between weighted stemwood volume predictions and volume estimates
using height of the 90" percentile of cumulative energy for footprints with greatest
percentage cover by: (a) coniferous species, RMSE 92.3m’/ha and (b) broadleaf
species, RMSE 67.5m?/ha. Please refer to Table 2.

(to upper terrain index limit)

Table 3 Additional correlation ranges
Waveform parameter R*range  RMSE range m’/ha
Dominant canopy height 0.05-0.34 100.2 - 143.4
Waeetonm canony ares 0.08-0.19 98.9 - 149.7
(Gaussian peaks)
Waveigrm canopy ared 0.05 - 0.24 93.4 - 140.1

Parameters shown were not found to be statistically significant or
produced weak correlations. Ranges stated are for both stemwood
volume methods.

Estimated maximum canopy height (Rwr) produced the
best estimate of stemwood volume for the tallest species
within footprints with R* of 0.60 and RMSE of 98.7m’/ha.

Differentiating between broadleaf and coniferous species
improved the correlation to R* of 0.65, RMSE of 68.2m*/ha and
R* of 0.68, RMSE of 88.7m’/ha respectively. These relationships
are illustrated in Fig. 3.

Neither heights of cumulative energy percentiles nor the
square of maximum canopy height improved these stemwood
volume estimates. Other waveform parameters used did not
produce statistically significant results or showed weak
correlations (Table 3).
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Table 2 Mixed stand stemwood volume estimates

Waveform parameter Predominant species R* Intercept Coefficient RMSE (m®/ha) Number

Coniferous 0.52 NS 9.83 98.1 58

Maximum canopy height (Ryr) Broadleaf 0.48 NS 5.69 74.7 24

Combined 0.40 NS 8.90 105.9 69

Coniferous 0.50 NS 0.36 101.2 58

Ren)? Broadleaf 0.45 NS 0.21 76.8 24

" ) 46.0
Combined 0.37 0.26 108.8 69
p>0.05

] ) Coniferous 0.57 NS 12.8 92.3 55

Beight of ] - percenle Broadleaf 0.59 NS 8.69 67.5 21
cumulative energy

Combined 0.49 NS 11.9 94.9 65

Comparison of weighted stemwood volume calculations with waveform parameter estimations. Groups include common footprints classified as
un-vegetated and those with no dominant vegetation type. The number of footprints used differs due to missing values, discrepancies between
Waveform Extent and estimated maximum height or anomalies such as ‘negative’ energy within height bins. Coefficients and intercepts are
statistically significant (p < 0.001) except where stated. NS indicates not significant.

Mixed Stand Stemwood Volume Estimation

Using the same waveform parameters, regression analysis
was repeated for the mixed stand weighted stemwood
volume estimates (“Mixed stand stemwood volume” section).
Correlation was found to be lower for estimates of mixed stand
stemwood volume than for the single species estimates
discussed in “Tallest species stemwood volume estimates”
section.

The height of the 90" percentile of cumulative energy
produced the best relationship with R* of 0.49, RMSE
94.9m*/ha for all footprints sampled.

Footprints were then distinguished according to whether
the predominant vegetation cover consisted of broadleaf or
coniferous species. This produced respectively R* of 0.59,
RMSE 67.5m*/ha for broadleaf species and R?* of 0.57, RMSE
92.3m?*/ha for conifers. These relationships are shown in Fig. 4
whilst the results of all waveform parameter analyses are
outlined in Tables 2 and 3.

DISCUSSION

A number of waveform-derived parameters were
considered with respect to their ability to estimate stand
stemwood volume as defined by independent estimates
derived from yield models.

Previous work (ROSETTE et al. in press) has shown the
ability for maximum canopy height to be extracted from GLAS
waveforms over this study site. This enabled an assessment to
be made of stemwood volume estimates for the corresponding
tallest tree species within footprints.

Maximum canopy height is, by its nature, determined by

little foliage of one or few trees within the stand. Therefore
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positions within and characteristics of the waveform canopy
return were explored as, particularly for mixed stands, they
are anticipated to better represent the combined contribution
of the canopy elements for the diverse species present within
footprints.

However, in some cases little relationship is seen which
may be a result of these factors varying considerably between
species e.g. the elevation of greatest returns from within the
canopy is determined by species canopy structure which will
also affect laser penetration. The validity of the methods using
waveform canopy area are dependent on the degree to
which reflectance between species differs at the measured
wavelength (1,064nm) in addition to the effects of canopy
profile on multiple scattering events and their representation
within waveforms. The weak correlation with weighted
stemwood volume suggests that, for such highly mixed stands,
if a relationship does exist with area under the waveform or
dominant canopy height, the broad distinction between
broadleaf and coniferous coverage is insufficient or that values
are inconsistent due to variation in species structure or
reflectivity. However, the highest correlation for mixed stand
stemwood volume estimates was provided by relative positions
within the canopy return produced using percentiles of
cumulative energy.

Forestry sub-compartments that were listed by the
Forestry Commission but classified as unpopulated (i.e. zero
anticipated stemwood volume) were included in comparisons
and the incorporation of these lower values has resulted in
improved correlation.

Due to expected deviation in relationships between
coniferous and broadleaf species, these groups were first
analysed together as a sample forest population before being
considered in isolation. NELSON ef al. (2004) found estimates of
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volume and biomass using their Portable Airborne Laser
System (PALS) to be significantly more accurate for conifers
than for their hardwood grouping (i.e. deciduous trees). This
paper shows only minor differences in correlation between
coniferous and broadleaf species, whilst RMSE is seen to be
lower for broadleaf-dominated footprints. However, mean
values of stemwood volume for vegetated stands are
327.7m*/ha and 174.7m’/ha for coniferous and broadleaf
species respectively and therefore a lower RMSE would be
anticipated for the latter as a result of this alone. The results of
this study suggest that differentiation may be necessary
between coniferous and broadleaf species in order to use
generalised relationships for broader scale stemwood volume
estimates.

Dispersion among smaller volume values is observed and
may be attributable to unmanaged re-growth or the effect of
the 5 ns emitted pulse width producing an artificial minimum
elevation difference of 1.5m even for flat surfaces. An initial
investigation suggests that, in most cases, GLAS waveforms
are representing actual above surface features such as
individual trees, shrubs or buildings.

Several waveform-based parameters within this study use
the maximum canopy height estimated from the multiple
regression equation using Waveform Extent and a Terrain
Index with field measurements taken within 19 footprints.
These estimates are dependent on the accuracy of the field
measurements (LARSEN et al. 1987) in addition to how
representative the selected footprints are of the complete pass.
Future work will explore methods of estimating stemwood
volume solely from waveform parameters.

Deviations from actual stand volumes are anticipated due
to errors inherent in yield model predictions as individual
stands may not perform in accordance with the models. If
stand performance and management treatments differ from
the yield model assigned, long-term forecast production for an
individual stand may vary from actual production by 20%
(EpwaRDS and CHRISTIE, 1981). However, the sub-compartment
database is updated annually to contain details of current
conditions. Recent work conducted by the Forestry Commis-
sion at a stand level using yield model estimates calibrated
with field measurements, produced vegetation height accuracy
of 98% whilst, in the course of this study, a comparison of
greatest field height measurements within 21 footprints with
corresponding yield model estimates of Top Height for the
tallest species revealed R* of 0.94.

Since top height is used within yield models they may be
anticipated to provide a reasonable indication of the vegetation
present. However sources of error are known and for
coniferous stands, yield models have been found to
overestimate actual volume. Furthermore, the Forestry
Commission yield models are not dynamic and therefore do
not account for mortality or species competition, assuming
that stand composition remains that of the time of planting.

A further simplification made in this study is that the

Rosette et al.

weighted stemwood volume calculation for mixed stands
assumes a regular distribution of components within sub-
compartments. Nevertheless, these yield models offer the best
available estimate of current conditions, are widely used in
forest management and provide useful data in order to explore
GLAS volume estimates.

LiDAR stemwood volume estimates with accuracy in
excess of 60-70% are anticipated to be welcomed by forestry
practitioners to contribute to national inventory. The results of
this study suggest that for homogeneous sites, this can be
achieved; however to reach this threshold for areas with more
complex species composition would require greater refine-
ment.

It is recognised that differences in relationships between
maximum canopy height or percentiles of cumulative energy
and stemwood volume within both coniferous species and
broadleaf species groups are likely to contribute to a
proportion of the variation observed. Investigation of a more
homogenous site may reveal improved correlation and a
possible significant contribution of other waveform parame-
ters. Future work will also explore exploitation of the full
waveform signal through radiative transfer modelling (NORTH
1996).

CONCLUSION

For a highly diverse, temperate forest, waveform-based
calculations from maximum height estimations using ICE-
Sat/GLAS Waveform Extent and Terrain Index were
compared with yield model estimates of stemwood volume.
The results succeeded in estimating stemwood volume of the
tallest species within coniferous stands with R* of 0.68 and
RMSE of 88.7m?/ha whilst for broadleaf stands, R* of 0.65 and
RMSE of 68.2m*/ha were produced.

An analysis of stemwood volume accounting for the mixed
composition of stands contained within footprint areas was
additionally carried out. A distinction was drawn between
footprints dominated by coniferous or broadleaf species.
Relationships using height of the 90" percentile of cumulative
energy explained 57% of variance, RMSE 92.3m’/ha, for
footprints in which coniferous species are prevalent. Footprints
with greatest cover formed by broadleaf species were found to
produce R? of 0.59 and RMSE of 67.5m?/ha.

The results suggest the potential for satellite LiDAR
estimates of volume to be extended to regional and national
scales and that a similar broad distinction between broadleaf
or coniferous species may be sufficient to quantify vegetation
for the requirements of forest inventory:.
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Forest Habitability for Wildlife as Evaluated by Airborne Laser Profiling

Sayoko Ueda™"?, Hayato Tsuzuki*' and Tatsuo Sweda*'

ABSTRACT

With an objective of evaluating forest habitability for wildlife in terms of forest structure, wildlife abundance
was observed using automated infrared sensor cameras while forest structure of the habitat was quantified with

airborne laser profiling in three study areas of 400ha each set up around Mt. Ishizuchi-san, Mt. Myoujin-ga-mori,
and Mt. Takanawa-san in Ehime Prefecture, Japan. Two parameters derived from airborne laser profiling, i.e. mean
and standard deviation of standing timber stock in each study area, were used as structural indexes of forests, while

the richness of fauna was quantified as the number of inhabitant species and their frequency of being captured by

the automated camera. Of the four possible combinations of the forest and faunal parameters, only the one between
the photographic capture frequency and standard deviation of standing timber stock revealed strong negative
correlation. Thus it was reasoned that the variability in timber stock has resulted from altitude variability within a
given study area which tends to be more pronounced in higher and more remote areas, leading to a conclusion that

what is really correlated with wildlife abundance is the proximity to the human domain.

Keywords: forest habitability for wildlife, airborne laser profiling, standing timber volume, infrared sensor camera

INTRODUCTION

Forest structure should be associated with its habitability
for wildlife in some way. Young regenerating forest stands with
their foliage layers close to the ground mean easy availability
of food for herbivores, while their openness allows easy
sighting by predators to result in less security. On the other
hand, old mature stands have opposite pros and cons for
feeding and nesting. What makes the regional evaluation of
habitability for wildlife difficult is the complexity which
innumerable forest stands of different species, age, area etc.
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create. This is the very reason why the airborne laser profiling
was introduced in this study to characterize forest structure of
extensive study areas. Should any relationship be found
between the forest structure and abundance of wildlife,
airborne laser profiling would prove to be a versatile tool for
quantitatively estimating not only timber resources but also
wildlife habitat over an extensive range.

As a matter of fact NELSON et al. (2005) suggested
relationship between the habitat of Delmarva fox squirrels
(Sciurus niger cinereus) and tree height and canopy closure
recorded using airborne laser profiling. In our study the mean
and standard deviation of standing timber stock were chosen
to represent forest structure of a given study area since they
are readily measurable by airborne laser profiling and that
they seem to be associated with welfare for wildlife in terms of
food availability and security.

METHOD

A study area of approximately 400ha was set up each
around Mt. Ishizuchi-san (1,982m a.s.l.), Mt. Myoujin-ga-mori
(1,216m) and Mt. Takanawa-san (986m) in Ehime prefecture,
Japan (Fig.1). At mean altitude of 1,300m the Ishizuchi study
area is the highest with vegetation ranging from dwarf stands
of such sub-alpine species as birch (Betula ermanii) on and
near the ridges to lush and tall stands of deciduous
broadleaved species and plantation of cedar (Cryptomeria
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Fig. 1 Study area: Three mountain of Ehime prefecture and these altitudes

japonica) and cypress (Chamaecyparis obtusa) on lower slopes
toward the valley bottom. It is also the remotest from the
heavily populated area of the Matsuyama Plain. At mean
altitudes of 800m and 500m respectively, the Myoujin and
Takanawa study areas are not only lower in elevation but also
closer in this order to Matsuyama, the capital of the
prefecture. Both the areas are basically covered by plantation-
forest of ceder and cypress with some remnants of such
natural vegetation as beech (Fagus crenata) and hemlock
(Tsuga sieboldii) on upper slopes and ridges with increasing
dominance of fir (Abies firma), chinquapin (Castanopsis spp.)
and evergreen oak (Quercus spp.) down the slope with
sporadic mixture of tiny cultivated lands along the lower valley
bottom.

The standing timber stock was estimated by airborne
laser profiling flown for approximately 4km through each
study area (Fig. 2). These data constitute a parts of the nadir
laser altimetry dataset acquired in September 2005 using the
NASA's Portable Airborne Laser System (PALS) over the
entire Ehime prefecture along 23 transects totaling 1360km.
The mission was flown 200m above the ground at a nominal
cruising speed of 180km/hr with an altimetry data retrieval
frequency of 400 Hz to result in the altimetry interval of 0.13m
horizontally along the flight track. However, with the steep
terrain slowing both the uphill and downhill flights, the final
altimetry interval turned out to be 0.08m horizontally along
the flight track. The primary data include reflections both from
the canopy and the ground. A continuous ground profile was
estimated by interpolating ground reflections, which subse-
quently was subtracted from the canopy profile to obtain the
vegetation profile 4 (x). Standing timber volume V (m’/ha) was

estimated on a basis of its correlation with the area S (m?/m)
under the vegetation profile per unit fight distance (TSuzuki,
2004; Tsuzuxl et al., 2006), i.e.

V=a-S=a- '[hJ(.);)xdx ~a- 2§x; =a-h 1)

where
x: distance along the flight track (m),
a: constant (m*/ha), and
hi: mean vegetation height (m).

The constant ¢ = 31.9m*/ha is obtained as a ratio of
vegetation profile area S to the standing timber volume
actually measured in 34 sample plots of 100-700m* each laid
out randomly directly under the fight path (TSuzuki et al. in
prep.). However, the value is tentative since this ground truth
survey is still under way for final target count of 200 plots, and
it would take some time to finalize. To obtain the standard
deviation of standing timber stock along with the mean and
total, the stock estimation was conducted for each 10m
segments of vegetation profile.

The wildlife observation was conducted with automated
infrared sensor cameras from August 2005 till October 2006,
but the actual duration and intensity of observation varied by
study area. The most intensive observation was made in the
Myoujin area (MM, Fig. 2-b) with five automated cameras
deployed alternately at 16 different localities within the study
area for the entire period of observation. For Ishizuchi (MI,
Fig. 2-a) three cameras were deployed at 15 localities but with
an interruption from December 2005 to June 2006 due to
winter closure of the access road. To compensate for the loss,
similar automated photographic observation by YAMAMOTO et
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a, b and c figures study areas of Ishizuchi, Myoujin and Takanawa respectively.

Lines indicate the airborne laser profiling transects.
Dots indicate observation camera locality (@ by this study, Il by YAMAMOTO et al. (2006)).
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al. (2006) during the snow-free period of May to November in
2004 and 2005 was also used. With only two cameras at three
localities from July to October 2006, observation in Takanawa
(MT, Fig. 2-c) was the shortest and least intensive.

The cameras were set up focusing on animal trails in a
wide variety of topography and vegetation without any bait, but
in the observation by YAMAMOTO et al. (2006) such bait as
honey and wine had been used. In both cases the cameras
used are 35-mm focal length “Field Note I” and “Field Note II”
(Marif.Co.Ltd) equipped with an infrared motion sensor to
trigger the shutter automatically. ASA 400 films of 36
exposures were exchanged along with batteries in one to three
months before they are exhausted. The cameras were
wrapped in waterproof film and plastic case, and fixed on
nearby trees by clamp.

The target fauna consists of 16 species, and include such
carnivores as red fox (Vulpes vulpes japonica), raccoon dog
(Nyctereutes  procyonoides viverrinus), masked palm civet
(Paguma larvata), badger (Meles meles anakuma), Japanese
marten (Martes memlampus memlamous) and J. mink (Mustela
itatsi); such hoofed mammals as shika deer (Cervus nippon
nippon) and wild boar (Sus scrofa leucomystax); such other
mammals as J. macaque (Macaca fuscata fuscata), J. hare
(Lepus brachyurus brachyurus), J. squirrel (Sciurus lis), flying
squirrel (Pteromys momonga) and mice (Apodemus spp.), and
such avian species as ural owl (Strix wuralensis), copper
pheasant (Phasianus Sommerringii intermedius) and J. night
heron (Gorsachius goisagi). Bats and canopy-feeding small
birds, also very common in Ehime prefecture and captured by
our camera as well, were discounted in this study since they
normally do not feed on the ground and their capture seems
rather accidental. Richness of the fauna with those 16 species
was evaluated by the number of species and their frequency of
appearance as they were photographed in a given study area.
The appearance frequency F was quantified as exposure
frequency per day per camera without any regard to animal
individuality, i.e.

2M,
s ®
where

M;: total number of wildlife photographed by the ith
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camera, and
D:: total number of observation days made by the ith
camera.

RESULT

The results are shown in table 1. In terms of mean
standing timber stock, the forest structure of the three study
areas tuned out to be almost the same, but were significantly
different in terms of standard deviation. This difference in
standard deviation may be best explained by the variability in
altitude within each study area. In the Ishizuchi area, the
contrast between the bushy vegetation even sporadically
devoid of woody species on the ridge and lush growth of
conifer plantations and remnant broadleaved deciduous stands
near the valley bottom contributed to the large standard
deviation. On the other hand, relatively less altitude variability
in the Myoujin and Tankanawa areas did to lessen standard
deviation.

In wildlife observation, the automated cameras captured
target animals totals of 209, 549 and 49 times respectively in
Ishizuchi, Myoujin and Takanawa. When adjusted for the
difference in observation period and number of cameras
deployed, the mean sighting frequency per day per camera
respectively translates to 0.13, 0.21 and 0.37 times and in
strong negative correlation (Fig. 4-a) with standard deviation
of standing timber stock (r = —0.921, p>0.05).

As for the number of resident wildlife, all the 16 target
species were identified by the automated camera in the
Myoujin area (Fig. 3), while it was only 11 species in Ishizuchi
with fox, deer, flying squirrel, owl and heron being absent, and
10 species in Takanawa with fox, mink, squirrel, flying
squirrel, owl and heron absent. The observed numbers of
resident species may well represent the reality for Myoujin
and Ishizuchi where the gross observation intensity exceeds
1500 camera- days each. However, this may not be the case for
Takanawa where the observation intensity was significantly
weak at only one fifteenth of the former two areas, and
considering its highest wildlife sighting frequency, there is a
good possibility that further observation may reveal all the 16
target species.

Fig. 4-a shows the correspondence between the wildlife

Table 1 Wildlife richness and forest strucre
Study Area MI MM MT
Observation days 574 435 84
Cumulative camera days 1,663 2,648 134
Wildlife Total number of photographic capture 209 549 49
Appearance frequency (/ day/ camera) 0.13 0.21 0.37
Number of species identified 11 16 10
Forest Structure Mean (m®/ha) 202.5 199.7 204.0
(Standing timber stock) Standard deviation (m®/ha) 93.7 76.3 68.6
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b): Shika deer

¢): Red fox

e): Bagger f): Japanese marten

Fig. 3 Observed fauna (All of them were observed at the Myoujin area.)
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k): Flying squirrel 1): Mouse

Fig. 3 continue



Forest Habitability for Wildlife as Evaluated by Airborne Laser Profiling 221

m): J. squirrel 7 n): Ural owl

0): Copper pheasant p): J. night heron

Fig. 3 continue
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Fig. 4 Relation between appearance frequency of wildlife and standard
deviation of standing timber stock (a), mean altitude of study sites
(b) or distance to centre of Matsuyama city (c)

appearance frequency and standard deviation of standing
timber stock, which is the only relationship found seemingly
significant in the present analysis between forest structure and
wildlife richness. However, the negative correlation in Fig. 4-a
is rather hard to explain from wildlife ecology point of view
since with higher availability of food in younger stands and
more places to hide in older stands, greater variability in

standing timber stock should be more favorable for wildlife
welfare. Thus, considering the aforementioned fact that the
variability in standing timber stock is associated with altitude
variability, which in turn is further associated with the absolute
altitude of the study area and its remoteness from the human
domain, it is more reasonable to conclude that the negative
correlation in Fig. 4-a is simply apparent with hidden but true
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correlation existing between wildlife abundance and proximity
to the human domain. As a matter of fact, the wildlife
appearance frequency is equally well and negatively correlated
with altitude of the study sites and their distances from the
local population center of Matsuyama (34km to Ishizuchi,
17km to Myoujin, and 14km to Takanawa) as shown in Figs. 4-
b (r=—10.947, p>0.05) and 4-c (r=—0.844, p>0.05).

In a closer look into the correlation by species, the affinity
to the human domain remained the same for herbivores and
omnivores, but not for carnivores, i.e. the correlation between
appearance frequency and standard deviation of standing
timber stock (and equivocally site altitude and distance from
Matsuyama) was negative for herbivores (deer, hare, and
mouse) and omnivores (raccoon dog, masked palm civet,
macaque, boar and pheasant) but positive for carnivores
(marten and bagger) with exception of fox, mink, squirrel,
flying squirrel, night heron and owl which were absent in one
or two sites and the specific correlation analysis was not
possible. This misanthropic tendency of carnivores can also be
seen in their absolute frequency of appearance. The top two
wildlife in Ishizuchi are J. marten and bagger while they are
wild boar and masked palm civet in Myoujin and deer and
raccoon dog in Takanawa.

DISCUSSION

With the limitation of only three study sites, even
apparently strong correlations between wildlife and forest
structure/location variables did not turn out to be significant
statistically. Thus the following discussion is limited to the one
on the tendency, but two patterns seem to be obvious, i.e.,
while herbivores and omnivores have strong affinity to the
human domain, carnivores namely the weasel family tend to
be misanthropic.

Three reasons are conceivable for herbivores and
omnivores. Firstly, their natural habitat ranges from mountains
to plains, with the latter now under human domination
(Komiya, 2002; EHIME pref., 2003 ; Imaizomi and HiraNo, 2004).
Additionally they are not misanthropic, and their sighting even
in urban area is not rare. Secondly, with widespread orchard
and farmland, more food is available closer to the human
domain. In addition, abandoned orchard and farmland
increasing over the past decades in the neighborhood of
forested areas are much easier to graze and vandalize. Finally,
the declining hunter population of the prefecture is making
approach to the vicinity of human domain safer and easier.
According to the MINISTRY of the ENVIRONMENT (2004), issue of
hunting license in the prefecture decreased by ten percent in
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six years from 1998 to 2004 with rapidly increasing proportion
of old and dormant license holders.

The misanthropic reasons for weasels are less obvious
because such a strong tendency is found only in J. marten
while J. mink is well known for their appetite for domestic
fowl. The possibility is that being a competing carnivore,
weasels tend to be repelled by dogs and cats around the
human domain.

In conclusion, no direct correspondence was found
between wildlife abundance and forest structure against the
original objective and expectation of the present study.
However, present finding that wildlife richness is much less
associated with forest structure than with proximity of forests
to the human domain was made possible only by the airborne
laser profiling which enables us quick, accurate and expedient
quantification of extensive forested area.
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Analysis of Canopy Structure in Beech (Fagus crenata) Secondary

Forests using an Airborne Laser Scanner

Ai Nishikami*"’, Yukihiro Chiba*', Yoshio Awaya*' and Yoshitaka Kakubari**

ABSTRACT

Airborne Light Detection and Ranging (LiDAR) is a useful tool for scaling up physiological processes from an
individual tree to the landscape level, because it can measure parameters that are related to canopy structure. The
objectives of this study were (1) to calculate the canopy and stand parameters that characterize the heterogeneity of
beech canopies and stands from LiDAR data and (2) to examine the applicability of these parameters by comparing
them with field census measurements. A total of eight census plots with various stand structures were set up in
beech forests on the Appi plateau (Iwate Pref., northern Japan) and on Mt. Naeba (Niigata Pref., central Japan).
LiDAR data was used to calculate several parameters for describing canopy structure: gap ratio; mean canopy
height; standard deviation (SD) and coefficients of variance (CV) of canopy height models (CHMs); canopy and
stand surface area derived from the CHMs and digital surface models. The gap ratios and CVs of the CHMs were
closely related to basal area (BA), and it may be possible to use them to quantify this variable when factors such as
low gap ratio and topographic condition are considered. The CV tended to increase with the gap ratio. In contrast,
canopy surface area was not strongly related to the canopy structure parameters. Consequently, the gap ratio and
the CVs of the CHMs are the preferable parameters for representing structural properties of beech stands. Further
analyses are needed to understand uncertainties in the relationships (inter alia) between, gap sizes, canopy height

and individual tree size.

Keywords: Beech forests, gap ratio, canopy surface area, CV of CHM

INTRODUCTION

Scaling up physiological processes from an individual tree
to the landscape level requires quantitative knowledge of the
relationships between canopy structures and the architectural
development of forest trees. It is essential to understand forest
structure in a large area. However, information about forest
structure has not been sufficiently described by linking
ordinary field census measurements with passive optical
remote sensing, because the field census data is conducted on
too small of an area for the two-dimensional remote sensing
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data. Airborne Light Detection and Ranging (LiDAR) has
proved to be a useful tool for measuring canopy structures at
an appropriate large scale. Using this technique, the three-
dimensional canopy structure can be analyzed in more detail
than by either ordinary field census or passive optical remote
sensing.

Various analyses of forest structure, using airborne
LiDAR data, have been reported: e.g., detecting individual tree
crowns in deciduous forests (BRANDTBERG et al., 2003),
estimating canopy profile, leaf area index (LAI), and the
aboveground biomass of broad-leaved forests (LEFSKY et al.,
1999; LoVELL et al., 2003; PARKER and Russ, 2004; RiaNO et al.,
2004). In further studies, RIANO ef al. (2004) found that the
percentage of ‘canopy hits’ was the best LiDAR-derived
estimator of canopy properties in oak forests, while PARKER
and Russ (2004) related the standard deviations of canopy
height to LAI in Tulip poplar forests. However, additional
effort is needed to develop more reliable and useful LiDAR
method for the purpose of scaling physiological processes.
Some of the architectural parameters derived from LiDAR
methods, such as canopy shape, canopy surface and canopy
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gaps, might provide desirable information related to canopy
structure and particularly the amount of leaves and branches;
these foliage measurements are necessary to scale-up
ecophysiological processes. These parameters are not directly
related to the quantity of foliage and branches, therefore we
will compare LiDAR measurements with the properties of
canopy structure obtained from ordinary field census in forest
stands.

Scaling-up physiological processes is required to evaluate
carbon sequestration and growth response of forest stands
under climate change, particularly in natural forests such as
the beech forests commonly found in cooltemperate regions
of Japan. Compared to artificial conifer forests, natural
broadleaved forests tend to be more heterogeneous in terms
of both species composition and the spatial patterns of canopy
structure. The heterogeneity of broadleaved forests makes it
difficult to describe their canopy and stand structures. LiDAR
methods, however, can be used to evaluate larger beech forest
area and accomplish the objectives of our study which are (1)
to calculate the canopy and stand parameters that characterize
the heterogeneity of beech canopies and stands and (2) to
examine the applicability of the parameters by comparison
with stand structures measured by field census.

MATERIALS AND METHODS
Study Site and Field Measurement

The beech forests sites are located on the Appi plateau,
Iwate Pref., northern Japan, (140°56'E; 40°00'N; 825m a.s.l.)
and Mt. Naeba, Niigata Pref., central Japan (138°44"-138°46'E;
36°51-36°56'N; 550 - 1,500m a.s.l.) (Fig. 1). Appi beech forests
can be separated into two types: secondary forests that have
comparatively uniform canopy structures; and selectively cut
forests, which have a more heterogeneous structure. The
stand age of Appi beech forests is about seventy years. The
Appi beech forests grow on a gentle slope of 6°. Three census
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Appi-4 was in an area of selective cutting.

At Naeba there are four census plots, each at a different
altitude: Naeba-1 is at 550m a.s.l.,, Naeba-2 and -4 at 900m a.s.l.,
and Naeba-3 at 1,500m a.s.l. Naeba-1, -2 and -3 are on gentle
slopes, but Naeba-4 is in a depression. The ages of the stands
at Naeba-1, -2 and -3 are about 150-200, 80-90 and 190-260
years, respectively (KUBOTA et al., 2005; KAKUBARI, 1975).

The topographic position and DBH (diameter at 1.3m
above the ground) of all trees with DBH > 5cm were measured
in each census plot. Except for Appi-4 and Naeba-4, tree
heights were also measured. Naeba-1, -2 and -3 plots were
delimited in the 1960s and the DBH of all stems in their plots
have been measured periodically since then. The stand
characteristics of the census plots are shown in Table 1.

plots (Appi-1 to -3) were established in secondary forest, and Fig. 1 Location of study sites
Table 1 Stand characteristics
Stand density Mean DBH Mean Height Stand Basal Area Plot size
Plot name , . Stand age Note

(stem no./ha) (cm) (m) (m’/ha) (m’)
Appi-1 2,208 14.7 14.1 46.6 610 70 Appi secondary forest
Appi-2 1,244 19.9 14.2 50.8 2500 70 Appi secondary forest
Appi-3 802 22.0 15.6 40.8 935 70 Appi secondary forest
Appi-4 127 32.3 - 14.3 2965 - Appi selectively cut forests
Naeba-1 265 38.0 237 404 2000 150 - 200**  Mt. Naeba 550m a.s.l.
Naeba-2 1,033 23.2 18.3 48.3 600 80 -90** Mt. Naeba 900m a.s.l.
Naeba-3 450 24.7 13.0 30.4 1000 190 - 260**  Mt. Naeba 1,500m a.s.l.
Naeba-4 362 32.1 - 325 1545 - Mt. Naeba 900m a.s.l.

*1: not measured
*2: referred to KuBora et al. (2005) and KakuBArl (1975)
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LiDAR Measurement

The airborne LiDAR data from the Appi beech forests
were acquired in September 2001 over a 1km X 1km area,
using an Asahi Laser Mapping System (Aero Asahi Co., Japan)
deployed on a helicopter. The data acquisition in Naeba, using
the same set-up, was undertaken in July and August 2003 over
400m x 400m area for all plot sites. At Appi, the flying height
was 200-300m above the ground, the flight speed was 13.9
m/s, the beam divergence of the laser was 1.2 mrad, and the
laser sampling density was 14 to 17 points/m?* At Naeba, the
flying height was 500-600m above the ground, the speed was
19.4m/s, the beam divergence of the laser was 0.2 mrad, and
the laser sampling density was 8 to 11 points/m* The scan
angles were at +20 degrees and the pulsing frequency was
25,000Hz at both sites. Both the first and last return pulses
were recorded.

The data sets obtained from the LiDAR measurement data
include a digital terrain model (DTM), digital surface model
(DSM), and canopy height model (CHM) calculated by
subtracting DTM from DSM for each site. Each data set was
described using three coordinates: horizontal east-west,
horizontal north-south, and vertical. The horizontal coordi-
nates were at 0.5m intervals.

Parameters Derived from LiDAR

In order to compare the canopy status with the stand
structure of the census plots, we employed seven parameters
calculated from LiDAR measurements: i.e., gap ratio, mean
canopy height, standard deviation (SD) and coefficient of
variance (CV) of CHM for canopy, SD of CHM for stand,
canopy surface area and stand surface area. All the parameters
can be calculated from the CHMs and DSMs. The SD and CV
of CHM for canopy or stand represent the variations in the
canopy or stand surface. The gap ratio denotes the ground
cover ratio of gap area to stand area of the forest. The canopy
surface area over the corresponding ground area reflects the
roughness of the canopy surface, which may relate to the
stand leaf areas because most leaves tend to aggregate
towards the canopy surface. The stand surface area would
depend on the roughness of the stand including both the
canopy surface and the ground area where there is no canopy
layer. Grid squares of 50m X 50m were set up in each study
site (54 grid squares in total), in order to compare the
relationship between the canopy parameters: gap ratio, CV of
CHM and canopy surface area.

The SDs of stand and the stand surface area were
calculated using all CHM and DSM data in each census plot
area. To determine canopy surface areas from LiDAR data, the
discrimination between canopy level and non-canopy level was
needed. Hence, the following criteria of CHM and DSM value
were adopted. CHM values less than 5m were regarded as
shrubs and/or the ground surface, since most trees in the
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census plots were > 5m. In order to judge whether the CHM
values of neighboring grids belong to a continuous canopy
surface or not, the threshold for the vertical maximum
difference between neighboring DSM grids was set to 3.5m.
The 3.5m threshold was determined by measuring the crown
shape of isolated beech trees: i.e. the vertical difference of
crown surface over a horizontal distance of 0.5m was less than
3.5m for beech trees. Areas where CHM < 5m and
neighboring DSM values differed in elevation by more than
3.5m were classified as gap areas. The gap ratio of the site was
then the gap area divided by the entire study area.

RESULTS AND DISCUSSION
Stand Structure from the Field Census

The stand density in the Appi secondary forests (Appi-1, -
2 and -3) ranged from 802 to 2,208 trees/ha; this was much
higher than the 130 trees/ha in the Appi selectively cut forest
(Appi-4). The mean DBH of the Appi secondary forest was 14.7-
22.0cm, while that of the Appi-4 was 32.3cm (Table 1). The
mean DBH in each Naeba census plot was larger than those in
the Appi secondary forests (Table 1). The stand density was
low, 265450 trees /ha, and the stand basal area (BA) was
moderate, 30.4-40.4 m*/ha, in Naeba-1, -3, and -4 (Table 1). In
Naeba-2, the stand density was higher than in the other plots
on Mt. Naeba. At all of the census plots, mean DBH tended to
decrease with stand density. A large number of relatively small
trees were present in the Appi secondary forests and in Naeba-
2, while large trees were sparsely distributed in the selectively
cut forests at Appi and in the other plots at Naeba.

It is difficult to determine the successional stage of a
forest from diameter distribution and mean DBH data without
additional information, since stand structure is influenced by a
range of factors (e.g. soil conditions and topography) besides
tree size and stand density. However, Naeba-1 and -3 appeared
to be more mature than the Appi secondary forests (Appi-1, -2
and -3) and Naeba-2 because these sites have older (KUBOTA et
al., 2005; KAKUBARI, 1975) and larger trees (Fig. 2). Of all the
study plots, it was most difficult to determine the successional
stage of Naeba-4 and Appi-4 because of topographic conditions
and the selectively cutting, respectively.
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Comparison of Stand Structures Determined by Field Census
and LiDAR Derived Canopy Parameters

The gap ratio, mean canopy height, SD and CV of CHM
for canopy, SD of CHM for stand, and canopy and stand
surface area were calculated from CHMs and DSMs for each
field census plot (Table 2). The gap ratios in Appi-1, -2 and -3,
Naeba-2, and Naeba-4 were the lowest (1-3%) suggesting
completely closed canopy, while those in Appi-4, Naeba-1 and
Naeba-3 were relatively high (53%, 17%, and 38%, respectively).
Artificial selective cutting was the cause of the high gap ratio
in Appi-4, whereas the high ratios in Naeba-1 and -3 were
ascribed to mortality of tall trees around 10-20 years ago.
NAKASHIZUKA (1984) recorded a gap ratio of 20.5% for beech
forests with stands that were more mature than those at our
study sites.

Mean canopy heights calculated from CHMs were higher
than the mean tree heights measured during the field census
(Table 1 and 2), though many studies show mean height from
LiDAR data being lower than field census (e.g. Coops et al.,
2007; N&SSET, 1997). The reason would be we count all trees
with DBH > 5¢m in field census, whereas the canopy heights
estimated by LiDAR data were based on the “canopy” criteria
as mentioned before.

The SD and CV of the CHMs for canopy and the SD for
stand in Appi-1, -2 and -3 and Naeba-2 were smaller than those
in Appi-4, Naeba-1, -3, and -4. The SD of the canopy height,
calculated from laser altimetry data, was found to increase
with the successional stage of Tulip poplar forests in
Maryland, USA (PARKER and Russ, 2004), which corresponded
to our results. However, the parameter of canopy surface area
did not vary so much between the census plots: approximately
2.0 ha/ha in each plot. But the stand surface area varied
considerably 2.0-6.1 ha/ha (Table 2). In the secondary and
primary forests in French Guiana, the ratios of canopy surface
area to ground surface area of 1.2 and 2.1 have been recorded
(BirnBAUM, 2001). These values are comparable with our

results, although slight differences existed in the methods for
measuring and calculating the parameter. The values tended to
differ according to the successional stage in the range of 2.0-
2.4 and 3.9-5.0 in younger forests (Appi secondary forests and
Naeba-2) and more mature forests (Naeba-1 and -3),
respectively.

The stand density was compared with the following
canopy parameter: the gap ratio, canopy surface area and the
CVs of the CHMs (Fig. 3). The gap ratio is the most basic
parameter and is highly correlated with the SD for stand and
stand surface area. The canopy surface area and CVs of the
CHMs are expected to describe canopy condition. In Appi-1, -2
and -3 and Naeba-2 the stand densities were higher than 800
trees/ha, the gap ratios and the CV of the CHM were lower
than 5% and 10%, respectively (Fig. 3 (A) and (B)). The high
stand density resulted in high canopy closure, thus the gap
ratios and CVs were low. Appi-4, Naeba-1 and -3 exhibited
comparatively low tree densities, and the values of the gap
ratio and the CVs of the CHMs appeared to be higher than the
other stands (Fig. 3 (A) and (B)). It should be noted, however,
that the gap ratios and the CVs of the CHMs were not closely
related to the stand densities. For example, although the stand
density at Naeba4 was low, the gap ratio was also
unexpectedly low. This exception presented by Naeba-4 could
be explained by the topographic properties of low-lying
depressions with fewer trees than the surrounding area
although the canopy covered the whole area of Naeba-4. The
canopy surface areas of the stands with lower gap ratios were
about 2 ha/ha; this might be a minimum value for canopy
surface area. Canopy surface areas of all stands decreased
modestly with the stand density (Fig. 3 (C)).

We also examined the relationships between BA and the
canopy parameters (Fig. 4) because BA is often used as an
indicator for canopy closure and stand biomass. In the stands
with comparatively higher gap ratio and lower density (Appi-4,
Naeba-1 and -3), the gap ratio decreased with the BA (Fig. 4
(A)). A similar tendency was found in the relationship between

Table 2 Canopy parameters from LiDAR data

N . Mean canopy SD*' of CHM ** of CHM SD*' of CHM Canopy surface  Stand surface
Plot name Ga[?%r)atlo height for canopy for canopy for stand area area
(m) (m) (%) (m) (ha/ha) (ha/ha)
Appi-1 | 17.3 0.9 5 0.9 2.09 2.17
Appi-2 2 17.1 1.6 9 1.7 2.23 2.39
Appi-3 2 17.8 17 10 1.8 2.13 2.23
Appi-4 53 14.7 49 33 6.9 2.57 6.09
Naeba-1 17 26.0 2.6 10 6.1 2.03 3.93
Naeba-2 3 19.9 1.2 6 1.9 1.70 2.01
Naeba-3 38 17.0 2.8 17 6.4 248 4.98
Naeba-4 2 22.1 2.1 9 21 1.88 2.00

*1: SD: standard deviation
*2: CV: coefficient of variance

J. For. Plann. 13:225-232(2008)
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the CV of the CHM and BA (Fig. 4 (B)). In the stands with
high gap ratio, canopy closure advanced with BA which is
closely related to foliage mass, therefore the gap ratio and CV
decreased with BA. On the other hand, the gap ratio and CV of
the CHM did not change with BA in the stands with lower gap
ratio, Appi-1, -2, -3, Naeba-2 and 4 (Fig. 4 (A) and (B)).
However, the parameters have potential to estimate BA when
factors such as low gap ratio and topographic condition are
considered because these parameters tended to decrease with
BA using all census plot data. The canopy surface area of the
stands with lower gap ratios did not change along with BA,
however, the canopy surface area of all the stands tended to
decrease with BA. This is similar to the relationship between
the canopy surface areas and stand density.

The results suggest that parameters obtained from LiDAR
data correspond to the successional stage and may provide
information about structural heterogeneity or roughness of

canopy surface. The structural heterogeneity may principally
be caused by the extent of stand development as expressed by
stand density, tree height, canopy layering etc. Furthermore,
interrelationships between the different canopy parameters
were identified and examined in the following section.

Relationships between Canopy Parameters in 54 Grid Squares

The interrelationships between the canopy parameters
(i.e., the gap ratio, CVs of the CHMs and canopy surface area)
observed at 54 grid squares in the Appi and Naeba areas were
examined. The gap ratios varied widely ranging from 1to 68%,
and the CVs of the CHMs varied between 5 and 51%. In
comparison with these two parameters, the canopy surface
areas did not vary so much (1.7 - 2.8 ha/ha) among the grid
squares. The CV tended to be positively correlated with gap
ratio (Fig. 5 (A)).
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After gap formation in the canopy, the understory and sub-
canopy trees will grow rapidly as a result of the improved light
conditions. However, vegetation recovery in any gap area will
be affected by the canopy structure, species composition and
site conditions as well as light environment. This may lead to
an increase in the variability of the canopy surface. Resultantly,
we could obtain the positive relationship between the CVs of
the CHMs and gap ratios as shown in Fig. 5 (A).

The canopy surface areas increased slightly with the gap
ratio and CVs of CHMs (Fig. 5 (B) and (C)), showing weak
correlations with canopy structure and spatial heterogeneity.
The stands with low gap ratio had approximately 2 ha/ha
canopy surface area and 5 - 10% CV (Fig. 5 (B) and (C)), which
had similar values of lower gap ratio stands regardless of stand
density and BA as discussed previously. These findings
suggest that the canopy surface, which effectively functions as
an interface between the atmosphere and the foliage layer,
remains similar, irrespective of the crown shape and

J. For. Plann. 13:225-232(2008)

A : Appi selectively cut forests
- : Mt. Naeba at 900m a. s. 1.

O : Mt. Naeba at 1500m a. s. 1.

roughness of the forest canopy.
CONCLUSION

In this study we analyzed canopy parameters easily
derived from LiDAR data, aiming to estimate canopy structure
parameters and elucidate the heterogeneity in extensive beech
forests. Our results indicate that the gap ratio and CVs of the
CHMs may be preferred parameters for describing stand
structure and its relationship to canopy structure. In the
studied forests there was some variation with respect to gap
ratio and roughness of canopy surface. Since the parameters
derived from LiDAR data involve structural aspects of
broadleaved forests, further study is needed to relate canopy
architecture to structural heterogeneity: e.g., the relationships
between gap size, canopy height, individual tree size and other
factors.
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Estimation of Stand Structure in the Deciduous Broad-leaved Forest
using Multi-temporal LiDAR Data

Yasuteru Imai*', Masahiro Setojima™*', Manabu Funahashi*', Toshio Katsuki**

and Masahiro Amano™**

ABSTRACT

In this study, we tried to estimate the stand structure of deciduous broad-leaved forest and mixed forest using
multi-temporal LiDAR data, and it was compared with field survey result and photo interpretation result. As a result,
there is the consistency in LiDAR data obtained the same period and the reproducibility of the DSM is high. In
deciduous broad-leaved forest, the amount of changes in the DSM around the defoliation allows us to understand
the stand structure such as the covering situation of sub tree and shrub and floor plant. In mixed forest, the multi-
temporal LiDAR data is effective for the evergreen tree/deciduous tree classification.

Keywords: LiDAR, DSM, deciduous broad-leaved forest, mixed forest, stand structure

INTRODUCTION

The development of the LiDAR techniques is making
progress in recent years, and many attempts have been made
to estimate the ground height and the tree height, as well as to
extract crowns (PERSSON et al., 2002) and estimate LAI. And
there are some reports on new applications in order to
understand the stand structure of the forest (SETOJIMA et al.,
2003), estimate the snow depth, and classify vegetation etc.
Especially, the stand structure of the forest provides useful
information that can be used for evaluation of the situation of
plantation management, habitat environment of wildlife, and
biodiversity.

In this study, we obtained the LIDAR data in multiple
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periods. And we calculated the difference in the DSMs (Digital
Surface Model) in multiple periods (hereinafter referred to as
the “difference method”) to understand the stand structure of
deciduous broad-leaved forest and mixed forest with different
tree species and management conditions. Furthermore, the
result of tree height estimation was used to classify the types
of stand structures.

METHOD
Study Area

Target area was set to Tama Forest Science Garden in
Tokyo, Japan. And three forests with different tree species and
management conditions were selected as the verification areas
(see Fig. 1).

+ Area A: Well-managed cherry (Prunus yedoensis) forest
- Area B: Zelkova (Zelkova serrata) forest in natural state
- Area C: Mixed forest

LiDAR Data Acquisition

The LiDAR data used in this study are shown in Table 1.
The LiDAR data collected in four periods by a fixed wing
airplane were used in this study. The footprint was about 66
cm, and the point density was 0.25 point/m? in all periods.
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Fig. 1 Study sites of this study (Tama Forest Science Garden)
fable 1 LiDAR data used for this study
Date Flight Altitude (m) | FOV (degrees) | Scan Rate (Hz)| Swath (m) | Density (points/m?)
2000.10.11 2500 15 20 658 0.25
2001.02.12 2500 16 19.5 703 0.25
2001.12.03 2500 20 24 882 0.25
2002.10.04 2590 15 20 682 0.25
Analysis which had been obtained in Area A and a mixed forest similar

Examination of reproducibility of DSM

The difference method focuses on the change in the
DSMs accompanying the leaf fall from autumn to winter. It is
necessary to confirm that the DSMs of the same season reflect
almost the same crown surface (reproducibility). We tried to
compare the point clouds in the DSMs obtained two seasons
before leaf fall (October 11, 2000 and October 4, 2002) to
examine the reproducibility of the DSM.

The point clouds in the DSMs were prepared by
extracting only the 1st return pulses from the random points
and resampling the points at 2m intervals after interpolation by
the TIN (triangulated irregular network).

Estimation of tree height based on DSM before leaf fall and DEM
after leaf fall

We prepared the DSM grid in 2m mesh before leaf fall
(October 11, 2000) and the DEM (Digital Elevation Model)
grid in 2m mesh after leaf fall (February 12, 2001), and the
DHM (Digital Height Model) was made after differentiation of
the two grids.

The DHM was compared with the result of field survey,

to that in Area C, to confirm the tree height estimation
accuracy.

Understanding the stand structure based on difference in DSMs

We prepared the DSM grids in 2m mesh collected before
leaf fall (October 11, 2000), during leaf fall (December 3,
2001), and after leaf fall (February 12, 2001) to find the change
in the DSM in each period after differentiation. The DSM
change from October to December is called “ADSM,”, the
DSM change from December to February is called “ADSM.”
and the DSM change from October to February is called “A
DSM,”. Every ADSMs corresponds to the amount of change
in the crown height in each period. After that, we tried to
understand the vertical structure (stand structure) in three
areas.

Approach to stand structure type classification using DHM and
ADSM

To achieve the objective classification of stand structures,
we attempted to quantitative classify the types of stand
structures using both ADSM; and DHM by thresholding the
values.
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RESULTS AND DISCUSSION
Examination of Reproducibility of DSM

Table 2 shows the
reproducibility of the DSM.

In Area A, the correlation coefficient between the two
DSMs with 4,025 points was 0.970, the RMSE (Root Mean
Square Error) was 1.334m, and the standard deviation of
height difference was 1.327m.

In Area B, the correlation coefficient with 11,010 points
was 0.959, the RMSE was 1.546m, and the standard deviation
of height difference was 1.493m.

In Area C, the correlation coefficient with 16,936 points
was 0.986, the RMSE was 1.417m, and the standard deviation
of height difference was 1.399m.

The correlation coefficient was very high in three areas,
suggesting that the variation patterns of the DSMs in the two
periods were similar. The RMSE and standard deviation of
height difference were about 1.5m, which is far smaller than
the range of the value of every ADSMs. It is considered that
the reproducibility of the DSM before leaf fall is high,
representing almost the same height (crown height).

result of examination of the
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Estimation of Tree Height based on DSM before Leaf Fall and
DEM after Leaf Fall

Fig. 2 shows the DHM based on the difference between
the DSM before leaf fall (October 11, 2000) and the DEM after
leaf fall (February 12, 2001). It is assumed that Area B has
many high trees of more than 20m in height, Area A has
comparatively low trees of 15m in height, and Area C has high
and low trees mixed together.

Table 2 shows the result of comparison between the
DSM, DEM, DHM and actually measured values. It was found
that the RMSE of the DSM was about 1.5-2m, the RMSE of the
DEM was about 0.5m, and the RMSE of the DHM was about
1.5m. This result suggested that the DHM includes a
difference about 1.5m with respect to the actually measured
tree height.

Understanding the Stand Structure based on Difference in
DSMs

Fig. 3 shows the ADSMs in three periods from before
leaf fall till after leaf fall. Since the DHM includes an error of
about 1.5m as shown in Table 2, it was considered that the
canopy condition didn’t change where the ADSMs was less
than 2m.

Table 2 The evaluation result on the reproducibility of the DSM and the height accuracy of the DHM

'i Reproducibility of the DSM Height accuracy of the DHM
DSM DEM DHM
N C.C RMSE S.D N |RMSE| N |RMSE| N |RMSE
Area A 4,025 | 0.970 1.334 1.327 20 | 1.434| 526 | 0.486| 20 | 1.489
Area B 11,010 | 0.959 1.546 1.493 = G = z
Area C 16,936 | 0.986 1.417 1.399 - g
Mixed Forest - - - 15 [2.051| 314 [ 0.669 | 15 | 1.493

N: Number of points, C.C: Correlation Coefficient, RMSE: Root Mean Square Error (m)
S.D: Standard Deviation of height difference of two DSMs (m)

(1)Area A

(2) Area B
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Fig. 2 The DHM of three areas
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Fig. 3 ADSMs in three periods (before leaf fall till after leaf fall)
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Fig. 4 Cross sectional drawing of change in DSMs during the defoliation period

In Area A, the ADSM, was less than 10m from October to and the amount of change exceeded 20m in some areas. From
December. From December to February, the ADSM. was less December to February, the DSM change areas were few
than 10m in some places, but the number of these places was compared with October to December.

less composed to that of October to December. In Area C, many areas were no change, but the DSM

In Area B, the DSM change areas from October to change areas were found in patches in three periods.
December were observed in all areas except the central area, As a result, it is considered that the ADSM, corresponds
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to cherry trees and zelkova trees that shed leaves early.

Fig. 4 shows the cross section of the change in the DSMs
from before leaf fall till after leaf fall (Refer to Fig. 3 for the
cross sectional location). It visually shows the condition of low
trees and forest floors in the
broadleaved forest, permitting estimation of the stand
structure. In forests where evergreen trees and broad-leaved
trees coexist like Area B and Area C, the ADSM; permits
clear classification of the boundary between evergreen trees
and broad-leaved trees.

interior of a deciduous

Approach to Stand Structure Type Classification using DHM
and ADSM

We tried to classify the stand structure types using DHM
and ADSM; by thresholding the values.

Table 3 shows the concept of type classification. Based on
the DHM, the dominant tree height was classified. Taking into
consideration the error of the DHM, 0-1m, 1-5m, 5-10m, and
more than 10m were regarded as the “road and herb”,
“shrub”, “sub-high tree”, and “high tree”.

Based on the ADSM,, the condition of the lower layer
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was classified. Areas where the ADSM; is 0-1m were regarded
as the “evergreen forest” because the seasonal change of the
DSM was almost nothing, and the other areas were regarded
as the “deciduous forest.” In the deciduous forest, the areas
where the same category of the DHM and the ADSM; were
regarded as “no lower layer,” the areas where the difference in
the two classes were 1-bm were regarded as “herbs in lower
layer,” and the difference was 5-10m were regarded as “shrubs
in lower layer.”

Fig. 5 shows the result of type classification.

Area A was mostly composed of deciduous high sub-high
trees, and the lower layer had nothing or herbs only.

Area B was mostly composed of deciduous high trees,
having nothing in the lower layer except the central and
northern parts. The central and northern parts were
composed of evergreen trees.

Area C was mostly composed of evergreen high/sub-high
trees, and deciduous high/sub-high trees were distributed in
columns and patches. In the lower layer, nothing or herbs
were growing at the bottom of slopes, while herbs or shrubs
were growing at the top of slopes.

To validate the result, field survey was conducted and the

Table 3 Concept of type classification of stand structure using DHM and A DSM;

DHM
0~1m 1~5m 5~10m 10m~
w U : shrub (e) U : sub-high tree (e) | U: high tree (e)
O=imy | road and b L :indistinctness | L : indistinctness L : indistinctness
U : shrub (d) U : sub-high tree (d) | U: high tree (d)
1~5m S
ADSM L : none L : herbs L : shrubs (e)
! . - - U : sub-high tree (d) | U high tree (d)
L : none L: herbs
10m~ _ - _ U : high tree (d)
L:none

(1)Area A

(2) Area B

Scale

U: upper layer, L: lower layer, (e): evergreen, (d): deciduous

Meters

A

100

100

(3) Area C

Fig. 5 The result of type classification of stand structure
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above result was compared with the cross section (see Fig. 4).
As a result, the type classification was almost satisfactory,
although the area with “no lower layer” was slightly larger in
the classification. In mixed forest, the evergreen/deciduous
classification of the high tree layer was correct, and the
identification of deciduous broad-leaved trees was compara-
tively correct.

CONCLUSION

This study was intended to understand the stand
structure of deciduous broad-leaved forest and mixed forest
based on LiDAR data obtained in four periods. It is also
intended to classify the types of stand structures with the help
of the information about tree height.

As a result, it was found that there is consistency in the
LiDAR data obtained the same period and the reproducibility
of the DSM is high; the amount of changes in the DSM allows
us to understand the stand structure of the interior of
deciduous broad-leaved forest, as well as type classification; In
mixed forest, LIDAR data collected in multiple periods are

Imai et al.

effective for classification of evergreen trees and deciduous
trees.

However, the verification is insufficient at present, and it
is necessary to collect the height information of high trees,
shrubs, and herbs by field measurement and aerial
photogrammetry to conduct quantitative verification of the
results of the method described in this paper.
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Estimating Mean Height and Stand Volume
in Broad Leaved Forest Stands using LiDAR

Eiji Kodani*' and Yoshio Awaya™’

ABSTRACT

Forest stand variables (mean height, stand volume, and mean diameter breast height (DBH), tree density)

were estimated in evergreen and deciduous broad leaved forest stand using LiDAR. LiDAR data were acquired
along 12km and 28km transects with 1 pulse per square meter and small foot print (20cm). We set plots in
evergreen and deciduous broad leaved forest stands from small to large on the transect and measured forest stand
variables (mean DBH: 3.4-41.2cm; mean H: 3.1-17.4m; V: 25.1-854m?* N: 295-9,507ha"; n=18). Laser pulses of digital
canopy height model were extracted in each plot and LiDAR indexes were calculated: average, maximum, 90, 75,

50, 25 percentiles, standard deviation, and coefficient of variation. A linear regression analysis was performed
between LiDAR indexes and forest stand variables. Mean height had the highest relationship with the LiDAR index
75 percentile (r*=0.79); stand volume with the LiDAR index average (1*=0.79), mean DBH with the LiDAR index 75
percentile (r*=0.56), and tree density with LIDAR index 75 percentile (r*=0.52).These results showed that low
density LIDAR was useful for forest stand variable and would be useful for update and modification of forest base

map and forest register.

Keywords: stand volume, mean height, deciduous broad leaved forest stand, evergreen broad leaved forest stand,

LiDAR

INTRODUCTION

Estimating spatial forest stand variables (e.g. mean
height, stand volume, mean diameter breast height DBH, and
tree density) is important for forest management. Air photo
interpretation and optical satellite remote sensing are
generally used in both study and practice. However there are
some problems with these methods: air photo interpretation
requires a technical professional and much effort, and the
accuracy of optical satellite remote sensing is relatively poor
(FRANSSON et al., 2004). Recent studies show that small
footprint area LiDAR (Light Detecting And Ranging) is useful
for estimating forest stand variables. Small footprint LiDAR
can be acquired with high and low density. Laser pulses of 5 or
more per square meter are irradiated from platform (i.e.
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airplane or helicopter) to ground in high density LiDAR
(HyYPPA et al., 2001), while laser pulses of 1 or less per square
meter in low density LIDAR (N4SSET, 1997a, b). High density
LiDAR is used for each tree variable, while low density LiDAR
is used for forest stand variable. Low density LiDAR can
estimate forest stand variables in a large area at low cost, while
high density LIDAR can obtain more detailed information.

Forest stand variables have been estimated with low
density LiDAR and various reports have been published
especially in North America and Europe. Species surveyed
with low density LiDAR have included Norway spruce (Picea
ablies Karst.), Scots pine (Pinus sylvestris L.) and birch (Betula
pubescens Ehrh.) in northern Europe (NAsSsSeT, 1997a; 1997b;
2002; 2004; NasseT and BJERKNES, 2001; NILSSON, 1996;
HOLMGREN, 2004), and Douglas-fir (Pseudotsuga menziesii
Franco) in North America (MAGNUSSEN and BOUDEWYN, 1998;
MEANS et al., 2000).

In laser profiling LiDAR, laser pulses are measured at the
point just under the airplane and line data are acquired as the
airplane moves. Although there is a difference between area
LiDAR and laser profiling in acquiring dimensions (i.e. area or
line), there are similarities in that the objective scale is forest
stand and the LIDAR index for estimating forest stand
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variables is calculated from many laser pulse data statistically.
Pine plantation and naturally occurred hardwood forests in the
Delaware Peninsula (MACLEAN and KraBILL, 1986), pine
plantation (NELSON et al., 1988), 6 land-cover biomass in
Delaware USA (NELSON et al., 2004), Canadian boreal forest
(Tsuzuxki et al., 2006) and Siberia forest (KUSAKABE et al., 2006)
were surveyed with this method.

Forests in Japan are mainly manmade coniferous forest
(Sugi: Cryptomeria japonica, hinoki cypress: Chamaecyparis
obtusa and Japanese larch: Larix kaempferi) and natural forest
(evergreen broad leaved forests and deciduous broad leaved
forests, NUMATA et al., 1975). The objective of this study was to
estimate evergreen and deciduous broad leaved forest stand
variables (mean height, stand volume, mean DBH and tree
density) using small footprint and low density LiDAR.

METHOD
LiDAR Specification

We set up two transects of 12km and 28km long and 100m
wide which traverse the western part of Shikoku island (Fig.
1). The 28km transect (T1) is located in the Ishizuchi
Mountains, and an additional 500m square (S1) is located near
T1 in the Ishizuchi Mountains. The 12km transect (T2) is
located in Ashizuri cape. LIDAR data were acquired along the
transects with an Optec ALTM 1255DC on 14 and 25
September 2002 before leaves turned yellow and on the square
with an Optec ALTM 1255 on 25 May 2004 after leaf flushing
finished. Asahi-koyo Corporation observed all area. Most of
the area was national forest. Flight height was 1000m above
the ground, LiDAR density was 1 pulse m?, footprint was
approximately 20cm, and the first and last pulses were

T1: Transect of deciduous
broad leaved forest
stand (28km)

* St Square of deciduous
broad leaved forest
stand (500m)

T2: Transect of Evergreen
broad leaved forest
stand (12km)

Fig. 1 Map of the transects and the square in the western
part of Shikoku island
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recorded. A digital terrain model (DTM) was generated by
Asahi-koyo using the last pulse data.

There are three types of methods of estimating DTM
from LiDAR data: 1) ground surface points are calculated from
minimum elevation of LiDAR pulse data in the local area, 2)
curved surfaces of the ground are estimated from LiDAR
pulse data using statistical methods, and 3) LiDAR pulse data
are divided using the segment method and segments of the
ground surface are extracted (MASAHARU, 2006). Asahi-koyo
used a roller method, which is a type of minimum elevation
method (YOKOTA et al., 2006): LiDAR pulse data in a stripe are
plotted on a y-z distribution graph, a roller of diameter R is
moved along the laser pulse data touching the minimum
elevation data, and LiDAR pulse data touched by the roller are
selected as ground surface elevation.

The processes of calculating DTM in this article were as
follows: 1) Outlier data with atmospheric dust were removed.
2) The roller method was used for selecting LiDAR last pulse
data and the first step DTM was generated. 3) The first step
DTM was plotted and outlier pulse data were excluded
manually. 4) LiDAR pulse data were selected again as ground
surface elevation and DTM was generated with the kriging
method using selected LiDAR pulse data in a 20-m circle. The
digital canopy height model (DCHM) was generated using the
differences between laser pulse data and DTM.

Field Survey

We set plots on the two transects and the square. The
plots included both small and large of evergreen broad-leaved
forest stand in Ashizuri cape and deciduous broad-leaved
forest stand in the Ishizuchi Mountains. Major species were
Machilus thunbergii, Quercus glauca, Quercus acuta, and
Castanopsis sieboldii in the evergreen broad-leaved forest
transect and Fagus crenata, Quercus crispula, Betula ermanii,
Acer sieboldianum, and Lindera triloba in the deciduous broad-
leaved forest area.

The plot size was 15m wide and 15-40m long, depending
on the tree density. Circle plots of 20m long diameter were
used for the 2 young forest stands. A square plot of 5m was
used for one young and high density stand. Thirty to forty
meter square plots were used for two low density forest
stands. We measured DBH with a tape measure and height
with  VERTEX (Haglof Inc., Sweden). Tree volume was
calculated with DBH, H and volume table (Forest Planning
Division of Japanese Forest Agency, 1970). The plots data rage
was as follows (mean DBH: 3.4-41.2cm; mean H: 3.1-17.4m; V:
25.1-854m? N: 295-9,507ha"). One or two points on the plots
were surveyed with differential GPS Trimble Pathfinder Pro
(Trimble Inc., USA) or Mobile Mapper (Thales Inc, USA) for
more than 10 minutes. Eighteen plots were surveyed from
autumn 2004 to winter 2005. The time difference between the
acquisition of field data and LiDAR data will not be significant,
because most surveyed stands were old and slow growing.
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LiDAR Analysis

We estimated forest stand variables using regression
analysis: calculating the correlation coefficients between forest
stand variables and LiDAR indexes, selecting the best LiDAR
index, and calculating the slope and the intercept of the
regression line. The following LiDAR indexes were calculated
according to previous studies: average, maximum, 90, 75, 50,
25 percentiles, standard deviation, and coefficient of variation
(ALDRED and BONNOR, 1985; NELSON et al., 1988; NASSET,
1997a, b; 2002; 2004; N&SSET and BJERKNES, 2001; TSUZUKI et
al., 2006).

LiDAR indexes were calculated as follows. The first pulses
laser data of DCHM were extracted from each plot and
indexes of maximum, average, standard deviation and
coefficient of variation were calculated. The quantiles
corresponding to the 25, 50, 75, and 90 percentiles were
calculated from a cumulative histogram of LIDAR DCHM in
each plot. It should be noted with this method that low density
LiDAR cannot detect individual trees, while forest stand
variables are calculated from measuring individual trees in
field plots. Although there is not a direct relationship between
LiDAR indexes and forest stand variables, there is an indirect
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relationship between them, according to allometrical
relationship and sampling theory (SPURR, 1960; MACLEAN and

KRrABILL, 1986; Tsuzuki et al., 2006).
RESULTS AND DISCUSSION

A linear regression analysis was performed between
LiDAR indexes and forest stand variables (Table 1). Mean
height had the highest relationship with the LiDAR index 75
percentile (r*=0.79, p=0.000); stand volume with the LiDAR
index average (r*=0.79, p=0.000), mean DBH with the LiDAR
index 75 percentile (r*=0.56, p=0.000) and tree density with the
LiDAR index 75 percentile (r*=0.52, p=0.001). LiDAR indexes
of the highest relationship and forest stand variable were
plotted, separating evergreen and deciduous forest stands
(Fig. 2-a to d). Fig. 2-a to d show all data were roughly on one
regression line, therefore we estimated them with that
regression line.

Although the r* between tree density and LiDAR index
coefficient of variation was high, plot no. 61 (P61) affected
much the r* (Fig. 2-d). P61 was only the young forest stand in
all plots that had lots of naturally regenerated small trees.
When removing the outlier p61, it was more difficult to
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Fig. 2 The relationship between forest stand variables and the LiDAR indexes of highest linear relationship (a: mean diameter
breath height DBH; b: mean height; c: stand volume; d: tree density; Ever.: Evergreen broad leaved forest stand; Dec.:

Deciduous broad leaved forest stand)
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Table 1 r* between forest stand variables and LiDAR indexes and the statistical significance of
the relationships (p)

Kodani and

estimate tree density than height and volume (*=0.33,
p=0.016). Plot no. 62 and 63 (P62, P63) were over the
regression line in Fig. 2-a, because P62 and P63 stands
included only upper story trees, while other stands included
upper and middle story trees. The forest canopy condition and
the DBH distribution affected mean DBH value. When
removing the outliers p62 and p63, mean DBH had highest
relationship with LiDAR index 25 percentile (r*=0.88, p=0.000).
Comparing 4 forest stand variables, the correlation coefficients
were higher, there were little outside data and most data were
nearly on the regression line in the mean height and the stand
volume. These results had an advantage, because stand
volume and mean height are more important for forest
management.

CONCLUSION

Forest stand variables are important information for forest
practice (i.e. silvicultural management and harvesting). In
Japan, a forest resource information system has been
constructed with a forest base map and forest register that
includes forest stand variables. However, more precise data
and surveying methods are needed in view of the growing
importance of estimating forest carbon stock. Forest resource
information is surveyed, modified and updated using aerial
photo interpretation and satellite optical remote sensing. This
article showed that low density LiIDAR was useful for
estimating broad leaved forest stands variables and would be a
valid third method for such surveys.

There are two problems for estimating forest resources in
a large area using LiDAR: the high cost of acquiring data, and
the many field surveys required. The Forest Agency of Japan
has been building a national forest resource inventory system
since 1999 and permanent plots in 4-km mesh are surveyed
every five years. LIDAR data in low density are acquired by the
Geographical Survey Institute and by the Ministry of Land,
Infrastructure and Transport, and the data cover a large area
of Japan. Forest resources could be estimated using LiDAR at
lower cost from these existing data, and methods of analyzing
low density LiIDAR are becoming more important.

Average Max  Percentile Standard Coefficient of
25 50 75 90 Deviation  Variation
DBH [cm] 0.31 0.32 0.31 0.51 0.56 0.53 0.34 0.02
p=0.016 p=0.014 p=0.017 p=0.001 p=0.000 p=0.001 p=0.011 p=0.531
H [m] 0.60 0.50 0.58 0.77 0.79 0.74 0.17 0.17
p=0.000  p=0.001  p=0.000 p=0.000  p=0.000 p=0.000 p=0.094 p=0.094
V [m® ha'] 0.79 0.47 0.77 0.78 0.76 0.70 0.00 0.26
p=0.000  p=0.002 p=0.000 p=0.000 p=0.000 p=0.000 p=0.847 p=0.032
N [ha] 0.45 0.40 0.40 0.50 0.52 0.50 0.08 0.45
p=0.002  p=0.005 p=0.005 p=0.001 p=0.001 p=0.001 p=0.245 p=0.002
(n=18)
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Land-cover Classification of Ehime Prefecture,
Japan using Airborne Laser Altimetry

Yoshiko Maeda™', Hayato Tsuzuki*', Ross Nelson** and Tatsuo Sweda™'

ABSTRACT

Airborne laser profiling of mainland Ehime Prefecture, Japan was conducted to develop an entirely new
method of land-cover classification, partly in preparation for the post-Kyoto national carbon budget accounting, and
partly for correction of the existing government land-use statistics, which should constitute the very basis of the
impending national carbon budget accounting of the Kyoto Protocol. The altimetry data was obtained by using
NASA’s Portable Airborne Laser System (PALS) along 23 parallel flight lines 4km apart from each other covering
the whole mainland portion of the prefecture. Based on the resulting surface profile representing topography and
structures on the ground with some reference to laser return intensity and nadir video images, land cover along the
flight line was classified into “forest”, “farmland”, “residential and urban”, and “others” using PALSA (PALS
Analyzer), a software developed for this particular purpose. This line evaluation was then developed into area
statistics by simply multiplying by the distance between the flight lines, i.e. 4km. The resultant land-cover estimates
not only differed from the existing government statistics as much as the latter does within itself, but also helped to
identify the causes and sources of discrepancy quantitatively. Thus it was concluded that coordinated use of this
new method with the existing system of land-use statistics would improve the overall credibility of the land-
use/land-cover statistics of the prefecture and the nation.

Keywords: airborne laser altimetry, land-cover classification, Ehime Prefecture, discrepancy with government

statistics, abandoned farmland

INTRODUCTION

As one of its prerequisites for national carbon budget
accounting, the Kyoto Protocol demands accurate and
consistent land-cover/land-use statistics from the Annex I
countries. This is particularly important for a country like
Japan which intends to utilize its forests as carbon sink to
offset emission from other sources. However, as far as the
existing land-use statistics are concerned, Japan does not seem
to be capable of coping with this requirement of consistency
due to contradicting figures among the statistics from different
ministries, departments and agencies. Some of the discrepan-
cies are identifiable as arising from difference in the definition
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of land-use categories. However, they still leave considerable
discrepancies, the source of which is either unidentifiable or
can only be guessed at best, degrading the confidence in all
the statistics involved.

As recommended by the Intergovernmental Panel on
Climate Change (IPCC, 2003), the best tool for correcting
such discrepancies of or renewing the existing statistics is
remote sensing due to its capabilities of covering large areas to
the remotest corners and of providing spatially explicit
information repeatedly. Most probably being too new and too
advanced, the airborne laser altimetry is not included in the
IPCC list of means of remote sensing, but it can provide much
better defined and more precise land classification than the
conventional means of remote sensing as NELSON et al. (2003)
has demonstrated for the state of Delaware, U.S.A. The
present work was conducted to develop a new method of land
classification for Japan using airborne laser altimetry for more
consistent and accurate statistics in response to the impending
Kyoto Protocol carbon budget reporting as well as in
preparation for the post-Kyoto greenhouse gas inventorying.
To be reasonably practical for countrywide application in not
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too distant future, Ehime Prefecture, one of the 47 prefectures
of Japan, was chosen as the test area. The completely
independent land-cover statistics thus created by airborne
laser altimetry alone was compared with the existing
government figures.

EXISTING GOVERNMENT LAND-USE STATISTICS

The two most comprehensive land-use statistics on Ehime
Prefecture available today are the one on the Land Use Control
bacK-up sYstem (LUCKY) from the Ministry of Land (LAND
and WATER BUREAU, MINISTRY of LAND) and another from the
prefectural statistics office (EHIME PREFECTURE STATISTICAL
OFrFICE (EPs0), 2005). The former is accompanied with a map
while the latter is not. Of the numerous discrepancies between
the two, the first to be mentioned is the 3.8% difference in total
land area of the prefecture, i.e. 5,677km* by LUCKY against
5,247km? by Epso. The exact agreement of the former with the
figure from the most authoritative Geographical Survey
Institute (GSI) does not necessarily mean its accuracy since
the statistical discrepancies are adjusted for the total land area
from the GSIL.

The discrepancies between the national and prefectural
statistics arise partly from the difference in definition of land-
use categories and partly from accuracy in data collection and
compilation. As shown in Fig. 1 categorization of “Road”,
“Water” and “Rangeland” is explicitly different between the
two. Implicit but more significant difference in definition exists
in handling of agricultural land and forest reserve. The former
is the area actually cultivated in the national statistics, while it
is the area legally registered as such in the prefectural
statistics. The latter is as a part of “Forest” in the national
statistics, but it is a part of “Others” in the prefectural statistics.

These discrepancies are difficult to be resolved due to
rather unaccountable difference in some of the actual figures,
which in turn distort the entire proportion of the statistics. A
typical example is “Forest”, which appears 21.5% more in
national statistics than in the prefectural. A small part of this
disagreement can be accounted for by the difference in

Prefectural (PSO) National (LUCKY)
. Forest
Forestt = = fpeemo—eoe—eosis T S
National forest | Private forest
Paddy Farmland
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Field Paddy |  Field | Rangeland
Urban and Built-up
Urban:and Built-up Residential Other. Industrial
residential
Pond Marsh Water River Canal
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definition mentioned above, but the rest is beyond any other
explanation than by what has been traditionally called “the
stretched measure”, which results in smaller figures than what
really is. This was rather common when the modern land
registration system was introduced a century ago partly due to
under declaration of land area on the side of owners to evade
tax, and partly due to lack of exact and efficient means of
surveying on the side of government. The correction seems to
have been almost completed by today for residential and
agricultural lands due to their limited size and accessibility, but
the measure seems still stretched for forests due to their
vastness and inaccessibility. Relatively small difference
between the national and prefectural statistics in the total land
area as compared with that in “Forest” area, indicates possible
distortion in the areas of other land uses.

AIRBORNE LASER PROFILING
OF EHIME PREFECTURE

The airborne laser altimetry was flown in September 2005
in cooperation with the NASA using its Portable Airborne
Laser System (PALS) onboard a Bell Jet Ranger domestically
hired from Akagi Helicopter Co. By this mission, the entire
Ehime Prefecture excluding the islands off the mainland was
covered with a total of 23 straight line transects 4km apart
from each other as shown in Fig. 2. By eliminating overlaps
and approach flights to the transects, the total length of the
flight lines used for land-cover classification and biomass
estimation was 1,358km. PALS is a nadir ranging system with
laser beam emission frequency of 2,000Hz, but only every five
ranging data was retrieved along with return intensity
resulting in a recording frequency of 400Hz. Nadir video
picture was also taken for reference in later analysis.

Fig. 1 Existing land-use classification of Ehime

Fig. 2 Airborne laser altimetry Flight passage
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CLASSIFICATION SOFTWARE

A software named PALSA (PALS Analyzer) was
developed for convenience and ease of land-cover classification
with the PALS data. It displays surface profile and laser return
intensity graphically along with video movie in coordination
with each other on the computer screen. Classification has to
be done manually by the operator by delimiting a continuous
portion of the same land cover and specifying its type. Then
the segment changes its color according to the prescribed land-
cover color code while the corresponding original altimetry
records are flagged behind the screen according to the
prescribed flag code for later statistical processing.

LAND-COVER CLASSIFICATION

With altimetry and return intensity recorded for every
17cm along the flight track, detailed land-cover classification is
possible with the PALS data. However, in the present analysis
only four major categories were distinguished, i.e.: “Forest”
where trees are growing including newly harvested areas
where continued forestry use is obvious; “Agricultural” which
includes paddy, cropland and orchard; “Residential and Urban”
which cover all the buildup areas including industrial areas,
airports, parking lots etc.; and “Others” which include all the
other areas as golf courses not covered by the preceding
categories. Roads were included in the category surrounding
them. So were inland water surfaces since their extent is more
or less negligible in mountainous Ehime Prefecture.

Classification was conducted in two steps with transect
length of 20m as a yardstick, i.e. when a given land cover
continued for more than 20m it was classified as such, but
otherwise it was temporarily classified as “Mosaic” for more
detailed classification later on. Theoretically, there are 11 ways
of combination in choosing two or more cover categories out
of the four major categories, but the actual mosaics
encountered were only three kinds, i.e. Forest + Residential,
Forest + Agriculture, and Agriculture + Residential. Being
relatively little, the first two mosaic transects were simply
reclassified. In the last category, however, only the sample
sections of 2.3km were reclassified into detail and the resulting
proportion was applied to the remaining 19.1km of mosaic
segments. The cover classification results along the flight line
were then converted into area statistics by simple rectangular
approximation, i.e., by multiplying the flight-line length of a
given cover category by the distance of 4km between the flight
lines.

RESULTS AND DISCUSSION
In spite of this seemingly very rough method of

conversion into area, the total land area of the prefecture
turned out to be 5,435km?, which is only 0.4% less than the GSI
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figure of 5,455km®. Considering the fact that the GSI figure for
the mainland Ehime was obtained as the grand prefecture total
less the area of islands over 1km?, the actual discrepancy could
be even smaller. On the other hand as shown in Fig. 3, the
laser-based cover classification looks as contradicting with the
existing statistics as the latter is within. However, the following
detailed analysis leads to some consistency among the three
estimates of land-cover/land-use classification.

Firstly, of the discrepancies in “Agricultural” land areas,
the one between the laser estimate and the national statistics
can be best explained by the fallow area, which amounts to 1%
of the prefectural land area according to the 2005 Agro-
forestry Census (EHIME PREFECTURE STATISTICAL OFFICE, 2005).
Unable to distinguish between them, the laser estimate of
“Farmland” (11.8%) may well includes the fallows in addition to
the actually cultivated “Farmland” (10.4%) given by the
national statistics, to result in the remaining discrepancy of
only 0.4%. The further discrepancy of 3.5% with the “Paddy and
Field” area (15.3%) of the prefectural statistics can be best
accounted for as the farmlands abandoned decades ago and
forested now but still registered as farmland. As a matter of
fact, more and more agricultural lands have been abandoned
and reclaimed by forests as the primary industry of the nation
dwindled and isolated communities in remote areas were
evacuated over the past decades. Some of them have been
artificially reforested, but the majority seems to have been just
left aside to natural reforestation. What makes the matter
worse in this prefecture is the rapidly collapsing orange
farming. The abandoned orchards turn more easily into bush
to make the government statistics hard to catch up.

The farmlands supposedly reclaimed by forests not only
resolve the discrepancies among the three estimates in
“Agricultural” land area but also ease those in “Forest” area.
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Consider the laser estimate of 81.7% and the national figure of
70.5% for “Forest”, and leave aside the prefectural figure of
49.5%, which is heavily distorted by the stretched measure
explained earlier. By discounting the reforested farmland, the
laser estimate of “Forest” area reduces to 78.5%, easing the
overall discrepancy. The remaining imbalance of 7.7% can be
explained as an underestimation in the national statistics,
the forest area of which is cited from the National Forest
Inventory  (NFI). to MATSUMOTO (2003), a
verification against actually measured forestland area revealed
an average of 6.7% underestimation in the NFI figures.
Involving only 40 or so sub-compartments totaling only 150ha,
the credibility of this result is limited but it makes ends meet
almost completely.

On the other hand, the laser estimate is neither free from

According

errors. Two sources of errors are conceivable. One is
associated with cover classification along the flight line, and
the other with the two-dimensional expansion of the line
classification into area by multiplying the distance between the
two adjacent flight lines. In this study, the first source of error
can be considered negligible since the cover classification was
made at every point of altimetry, i.e. at an interval of 17cm
along the flight line. Thus the only source of error in this study
is the distance between the two adjacent flight lines, which
happened to be four km. The closer the adjacent flight lines,
the less the error would be, but it is difficult to quantify the
latter as a function of the former in the present study. Thus, it
would be fair to attribute the final discrepancy of 6.7% equally
to the laser estimate and to the national statistics.

The discrepancies in the “Urban” and “Others” areas
among the laser, national and prefectural estimates are less
serious than in the “Agriculture” and “Forest” areas. The
discrepancies in the “Urban” area are negligible at 4.8, 4.1 and
4.4% of the prefectural land area respectively in the laser,
national and prefectural statistics. Large discrepancies in the
“Others” area may seem serious, but the value of 9.4% of the
prefectural land area in the national statistics can be explained
as simply inflated in adjustment of its internal imbalance to the
authoritative figure of the GSI, while the over-inflated figure of
30.7% in the prefectural statistics is simply a compensation for
the reduction in “Forest” area due to the stretched measure.

CONCLUSION

Two conclusions can be drawn from the result above.
Firstly, the airborne laser profiling proved to be a prospective
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method of consistent and objective land-cover classification.
With its cover classification along the flight line as precise as
17cm, its overall accuracy depends on the distance between
two adjacent flight lines. With only 0.4% discrepancy with the
most authoritative GSI figure on the total land area of the
prefecture, the present spacing of 4km between the flight lines
should be satisfactory enough for the areas as large as a
prefecture, but finer spacing would improve the accuracy of
land-cover statistics since each cover category occupies only a
part of the prefecture.

Secondly, our land-cover classification by airborne laser
profiling revealed some of the problems in the existing
government land-use statistics primarily based on legal land
registration and aerial photography. It also helped to ensure
the credibility of the existing land-use statistics by identifying
quantitatively the causes and sources of discrepancies between
them as well as with the laser-based classification. Coordinated
use of the airborne laser altimetry with the existing statistics
would certainly improve the overall quality of land-use/land-
cover statistics of the prefecture and the nation. The most
urgent and important task for such coordination is
establishment of common definition and terminology.
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Article

Comparison of Different Sampling Density Data for Detecting
and Measuring Individual-trees in a Mountainous Coniferous Forest
using Small-footprint Airborne LiDAR

Tomoaki Takahashi*', Kazukiyo Yamamoto™*” and Yoshimichi Senda**

ABSTRACT

This study investigated the effects of laser-sampling density on individual-tree detection and tree height
estimation changing the sampling density by overlapping three flight data in a mountainous coniferous forest. The
LiDAR system used in this study was mounted on a fixed-wing aircraft. The study area was closed-canopy, middle-
aged Japanese cedar (Cryptomeria japonica) plantation in Japan. We prepared three sets of single flight data (3.2
points/m?), three sets of double-overlapping data (6.5 points/m?) consisted of two single flight data, and one set of
triple-overlapping data (9.7 points/m?) consisted of three single flight data within this study plot. Namely, a total of
seven datasets were used in the analysis. The numbers of detected same trees among same laser-sampling density
datasets were different and increased with the increase of the density. The detection rate of same trees among all
datasets was approximately 55%, and the detected trees belonged to dominant and co-dominant trees within the
plot. In all datasets, we found that if a given field tree has relatively lower treetop-elevation and smaller crown radius
than that of the nearest field tree, and these trees are close to each other, the lower tree is difficult to detect in
mountainous coniferous forest. But the number of detected small trees between 10m and 18m height increased
with the increase of laser-sampling density. LIDAR-derived median and mean tree heights were slightly greater than
that of field measured tree height in this study site. Although there were significant differences between field
measured and LiDAR-derived tree heights for all datasets (p < 0.01), the difference between maximum and
minimum RMSE for tree height estimates was only 0.17m and the maximum RMSE was 1.02m. All results of this
study indicate that although greater laser-sampling density data can provide information of more varying tree size,
3 or 4 points/m® of laser-sampling density data would provide accurate individual-tree detection of upper-storey
trees and tree height estimates, given as RMSE, is approximately 1m in middle-aged Japanese cedar forests in
mountainous areas.

Keywords: LiDAR, laser, sampling density, individual-tree, coniferous forest

terrain can be estimated accurately with high-density small-

INTRODUCTION footprint airborne LiDAR data (HYYPPA et al., 2001; PERSSON et

al., 2002; TAKAHASHI et al., 2005a). Some researchers have

Airborne light detection and ranging (LiDAR) is a useful focused on the effects of laser-sampling density on estimation
and powerful tool for estimating forest parameters. Especially, of individual-tree parameters using small-footprint LiDAR for
many researchers have previously shown that individual-tree the purpose of reducing costs of data acquisition in recent
height in some coniferous forests with flat and steep slope years (NILsON and HOLMGREN, 2003; HIrATA, 2004; YU et al.,
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2004). In general, when the sampling density decreases, not
only the number of detected trees would decrease (ZIMBLE et
al., 2003), but also the accuracy of tree height estimates would
deteriorate because of missing treetops (GAVEAU and HILL,
2003). Tree height estimates with small-footprint airborne
LiDAR data would be principally calculated by subtracting
digital terrain model (DTM) from digital surface model
(DSM). Therefore it is considered that not only the accuracy
of the DSM, but also the accuracy of the DTM would
significantly affect individual-tree height estimates.

Although Kraus and Prerrer, (1998) indicated that the
steeper the slope angle become and the lower the number of
laser pulses that hit the ground surface become, the accuracy
of DTM would be lower. Our previous study showed that the
root mean square error (RMSE) of the LiDAR-derived tree
height estimates was less than 1m in a mountainous
coniferous forest with steep slope in Japan when using a
helicopter-borne scanning LiDAR which produced high-
density data (e.g., more than 8 to 10 points/m?®) by single flight
(TAKAHASHI et al., 2005a). In order to acquire high-density laser
data, researchers may select two ways, one is application of
helicopter-borne scanning LiDAR systems with lower flight
speed and altitude by single flight, and the other is application
of LiDAR systems mounted on fixed-wing aircrafts with higher
flight speed and altitude by several repeat flights. While these
ways have both merits and demerits in terms of cost, quality of
the acquired data, and measurement time, the former way
seem to be able to provide higher quality data and the latter
way seem to be more suitable for the measurement for wide
area in terms of cost, respectively. Although we found that the
helicopter-borne LiDAR could provide good estimates of
individual-tree heights in a mountainous coniferous forest in
Japan, the relationship between the laser-sampling density and
the accuracy of LiDAR-derived tree height estimates when
using fixed-wing airborne LiDAR remains unknown.

For the purpose of reducing costs of LiDAR data
acquisition maintaining a preferable accuracy of the estimates
of forest parameters in mountainous forests with steep slopes,
we should investigate the effects of laser-sampling density on
the estimation of individual-tree parameters in such forests.
Therefore in this study, we investigated the effects of laser-
sampling density on individual-tree detection and tree height
estimation changing the density by overlapping three flight
data acquired by a fixed-wing airborne LIDAR in a
mountainous coniferous forest in Japan.

MATERIALS AND METHODS
Ground Reference Data

The study area was the Nagoya University experimental
forest located in Aichi Prefecture in central Japan (lat. 35° 12’
N, long. 137° 33’ E, 930m asl). Even-aged (49-year-old) closed-
canopy coniferous plantation was chosen for this study. We

Takahashi et al.

established a square plot (approximately 50%50m) in the
plantation, and the terrain slope within the plot ranged from
11.4 to 47.8 degrees. The plot mainly consisted of planted
Japanese cedar (Cryptomeria japonica) (235 trees); however,
planted hinoki cypress (Chamaecyparis obtusa) (21 trees),
Japanese red pine (Pinus densiflora) (2 trees), fir (Abies
homolepis) (2 trees), and sawara cypress (Chamaecyparis
pisifera) (2 trees) were also mixed in. The forest floor was
covered with litter, and the understorey vegetation that had
not been weeded mainly consisted of kumazasa (Sasa veitchii)
and shiromoji (Lindera triloba) with a height less than
approximately 2m. Because there were two trees whose crown
shape was distorted, a total of 260 trees were used for the
analysis in this study.

During fall and winter of 2003, i.e., after the growth
season had ended, tree measurements were completed. Static
GPS surveys were used to determine the accurate position of a
reference point in an open area near the plot; subsequently,
the tree positions were surveyed in relation to the reference
point as follows. The positions of the center of all tree stems
were measured using a compass with an accuracy of 1° and a
portable laser distance measurement with an accuracy of Imm
(DISTO4, Leica Geosystems, Heerbrugg, Switzerland), thus
making corrections for each stem diameter at the height at
which the laser beam was incident. Then, tree heights and
diameters at breast heights (1.3m above ground level) of all
individual-trees were measured using a dendrometer with an
accuracy of lcm (Ledha-Geo, Jenoptik laser, Jena, Germany)
and a diameter tape, respectively. Subsequently, the projected
on-ground crown radii at a height of 1.3m above ground level
(eight directions) were measured using a measuring tape.

Although it was only one year, there was a gap between
the acquisition time of the LiDAR data (fall 2004) and the
ground truth data (fall and winter 2003). Because we mainly
address individualtree height estimation by LiDAR, field
measured tree height values in 2003 should be corrected in
some degree. To ascertain the one-year increment in tree
height, we used the results of stem analysis for three sampled
trees (Japanese cedar) that had been used for estimating past
tree heights as of 2001 in our previous study (TAKAHASHI et al.,
2005a). Richards growth function (RICHARDS, 1958) was used to
predict the height as of 2004 (H(¢)) for each sampled tree as
follows:

H®) = M(1-e")" @

where M, a, and b are parameters and t is age. These three
parameters were estimated with the results of the stem
analysis for each sampled tree. The predicted height
increments between 2003 and 2004 for each sampled tree are
shown in Table 1. In this study, the arithmetic mean value of
the height increments was added to field measured tree height
values as of 2003 for each standing tree within the plot.
Subsequently, the corrected tree heights and uncorrected
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Table 1 Predicted parameters (M, a, and b) of Richards
growth function for three sampled trees and tree
height increments between 2003 and 2004
Stem 1 Stem 2 Stem 3 Mean
M 28.485 36.923 22.041
a -0.047 -0.020 -0.050
b 1.654 1.046 1.365
Increment 1.009 1.013 1.007 1.010
Richards growth function is shown in Eq.(1) in the text.
Table 2 Summary of plot reference data
Range Mean +SD¢
Diameter at breast height (cm)*  8.2-49.0 25.7+7.7
Tree height (m)" 9.0-29.8 19.3£3.5
Crown radius (m)* 04- 3.4 1.6£0.5

*Measured data as of 2003
"Predicted data as of 2004

“SD denotes standard deviation

DBH and crown radius were used as reference data in the
analysis. A summary of the plot reference data is shown in
Table 2. Hereafter, trees identified in the field are called “field
tree” in this study.

LiDAR Data Collection

The LiDAR data acquisition was performed on 4th
November 2004 using a fixed-wing airborne laser scanner
(Optech ALTM 2050) operated by Nakanihon Air Service Co.,
Ltd., Japan. In this study, the position of the reflecting object
was determined from the first and last pulse. Laser
measurements were made on three parallel flight lines,
hereafter, referred to as S,, S;, and S;. The settings of the
LiDAR system for each flight were almost same. The beam
divergence was 0.19 mrad, giving a footprint diameter of
approximately 0.2m with the flight altitude of approximately
1,080m above ground level, and the aircraft’s speed was
approximately 70m/s. The scan mirror frequency, laser pulse
frequency, and the scan width were 70Hz, 50,000Hz, and =+
4.9°, respectively. By these specifications, the theoretical
average distance between footprints was approximately 0.5m
along the scan line and approximately 1.0m along the flight
line for each flight. We firstly prepared three sets of single
flight data, ie., Si, S;, and S, then three sets of double-
overlapping data (Di, Dus, and Dss) consisted of S, and S,, S,
and S;, and S, and Ss, respectively. Finally, one set of triple-
overlapping data (T..s) consisted of all three single flight data
was prepared. So a total of seven datasets were used in this
analysis. The details of incident angle of laser pulses and actual
laser-sampling density for each single flight data within the
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plot are shown in Table 3.

Processing LiDAR Data, Detecting Individual-tree Crowns and
Estimating Tree Heights

Parameter settings in processing data were not changed
for all datasets. The methods for preprocessing each dataset
and creating a digital surface model (DSM), digital terrain
model (DTM), and canopy height model (CHM) within the
plot were the same as reported in TAKAHASHI et al. (2005a).
Firstly, the unevenly distributed laser reflection point data was
converted into two raster layers with a pixel size of 0.5m
because theoretical laser-sampling density was approximately
3.2 points/m* for single flight data. The first raster layer,
referred to as DSM..., was assigned the height value of the
highest laser reflection point within each pixel using only first
pulse data. The second raster layer, referred to as DTM.,.., was
assigned the lowest laser reflection point within each pixel
using both first and last pulse data. Then both DSM... and
DTM... were refined by removing noise and interpolated for
null-pixels. The interpolation methods used in this study were
spline interpolation for DTM (MAGNUSSEN and BOUDEWYN,
1998; RiaNO et al., 2003), and inverse distance weighting
method that does not change the original value for DSM
(Popescu et al., 2002). Subsequently, CHM was computed by
subtracting DTM from DSM.

Individual-tree crowns were identified using our software
named LiDAS (LiDAR Data Analysis System), which has
functions to identify individual canopy gaps and segment tree
crowns (TAKAHASHI et al., 2005b). Similar algorithms of
segmenting tree crowns based on both the extraction of local
maxima (WULDER et al., 2000) and region growing were shown
in HyypPA et al. (2001) and MALTAMO et al. (2003). In order to
locate trees, local maxima which are considered to be treetops
were searched by 3 %3 moving window in low-pass filtered
(i.e., smoothed) DSM, and then used for region growing
segmentation. This system requires the determination of an
important threshold value, which is the difference between the
height of the crown base within the smoothed DSM and the
ground surface height of canopy gaps within the smoothed
DSM. The best threshold value was determined by trial and
error, and 8m was selected as the threshold value in this study.
After generating individual-tree crown outlines by LiDAS for
the smoothed DSM, they were laid over CHM. LiDAR-derived
individual-tree heights were computed as the maximum value
of CHM within each segmented crown (MALTAMO et al., 2004).

Evaluation Method for Detected Tree Crowns and Estimates
of Tree Heights

As mentioned before, LiDAR-derived tree heights were
directly derived from CHM which was calculated by
subtracting DTM from DSM in this study. Therefore, before
evaluating both detection of individual-tree crowns and
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measurement of tree heights, the statistics of DSM and DTM
were investigated for each dataset. Also, we incidentally
investigated the relationships between two single flight
datasets among three flight lines (S, S, and S;) concerning
the elevation of DSM and DTM to assess reproducibility of
DSM and DTM derived from different single flight lines.

Each LiDAR-detected tree crown had to be identified at
the location of field tree for all datasets. If one field tree existed
within a segmented crown, the detection was considered to be
correct. If several field trees existed within a segmented
crown, the field tree with the highest treetop-elevation was
identified as the segmented crown, and the remaining
unidentified field trees were defined as undetected trees. For
calculating individual-treetop-elevation, we used field tree
heights and ground elevations surveyed in the field. The tree
matching process is based on the fact that dominant and co-
dominant trees are more likely to detect than intermediate or
suppressed trees in Japanese cedar plantations in a
mountainous forest by LIDAR measurements as shown in our
previous study (TAKAHASHI et al., 2005). In order to ensure the
accuracy of the tree matching process, we assessed the
differences between horizontal location of field tree with the
highest treetop-elevation and local maximum pixel within
individual crown segment. In this assessment, the detected
same trees among all datasets were targeted. Then, to
investigate the characteristics of detected and undetected
trees, we mainly focused on mean crown radius and tangent
(tan#) consisted of horizontal distance and viewing angle
(depression or elevation angle) from a given field treetop to
the closest field treetop (see Fig. 1) referencing a method in
PERSSON et al., (2002). In this study, we denoted that the
depression and elevation angle have negative and positive
value, respectively.

For the evaluation of tree height estimates, the detected

Fig. 1 Horizontal distance (solid arrow) and viewing angle
(@) from a given field treetop (left tree) to the closest
field treetop (right tree)

In the case of this figure, & represents depression

angle.
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same trees among seven datasets were mainly targeted. We
firstly assessed the statistical significant difference of average
such as mean and median tree heights among groups,
including filed data and seven datasets. In this study, Friedman
test (HoLLANDER and WOLFE, 1973) and the Scheffe procedure
as a post hoc test were applied in the statistical tests. Next,
RMSE for LiDAR-derived tree height estimates was computed
for each dataset as follows:

RMSE = @

n

where &, and ke are LiDAR-derived and field measured tree
height, respectively. Finally, we investigated the relationships
between LiDAR-derived and field measured tree heights by
regression analysis, in which models were fitted to the data
using the least-squares method. Only for the regression
analysis, the detected same trees among same laser-sampling
density datasets were targeted.

RESULTS

The statistics of DSM and DTM for each dataset are
shown in Table 3. Five statistics, i.e., minimum, maximum,
mean, standard deviation, and coefficient of variation of the
elevation were almost same among all datasets for DSM and
DTM. Table 4 shows that the differences between two single
flight datasets among three flight lines (S,, S., and S
concerning the elevation of DSM and DTM. Although mean
errors of DSMs and DTMs were almost zero, RMSEs of DSMs
were grater than that of DTMs. Fig. 2 shows that the example
of scatter plots for the relationship between two single flight
datasets (S, and S.) concerning the elevation of DSM and
DTM. Many outliers exist in the relationship between two
DSMs, on the contrary, there are few outliers in the
relationship between two DTMs.

The differences between locations of field tree and local
maximum within each crown segment for detected same trees
among all datasets are shown in Table 5. In this table, dx and
dy denote the mean differences for easting and northing,
respectively, and they were computed by subtracting the
position coordinate of local maxima from that of the
corresponding field tree for each direction. They had negative
values and their magnitude of the values was small for all
datasets. RMSEs for the differences were slightly grater than
the resolution of raster data used in this study for all datasets
except S..

The number of detected trees for each dataset is shown in
Table 6. The detection rates were almost same among all
datasets. But the numbers of detected same trees among same
laser-sampling density datasets were different and increased
with the increase of the density. The detection rate of same
trees among all datasets was approximately 55%. Both Table 7
and Fig. 3 show the characteristics of detected and undetected
same trees among all datasets. Also, trees which were either
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Table 3 Actual laser-sampling density and incident angle within plot, and statistics of DSM and DTM for
each dataset
Slx SZB S3a Dlzb [)]Iih I)Z3b TlZ.‘!c
Sampling density (points/m?) 3.3 3.3 3.1 6.6 6.4 6.4 9.7
Incident angle (degree) 0.5-3.7 0.0-2.2 0.0-3.3
Min 938.50 938.46 938.52 938.46 938.50 938.52 938.52
Max 997.98 997.97 997.54 997.98 997.98 997.97 997.98
DSM Mean 967.58 967.62 967.63 967.79 967.76 967.81 967.95
SD4 14.05 14.05 14.04 14.09 14.08 14.08 14.08
CV (%)° 1.45 1.45 1.45 1.46 1.45 1.46 1.46
Min 938.56 938.65 938.52 938.54 938.57 938.60 938.53
Max 978.80 978.73 979.24 978.67 979.10 979.06 979.07
DTM Mean 952.89 952.87 952.89 952.84 952.86 952.85 952.82
SD! 9.57 9.58 9.62 9.59 9.60 9.59 9.59
CV (%)¢ 1.00 1.01 1.01 1.01 1.01 1.01 1.01

*Three sets of single flight data, i.e., Sy, Sz, and S3

"Three sets of double-overlapping data (D12, D13, and Dz3) consisted of Sy and Sz, S; and Ss, and Sz and Ss, respectively

“One set of triple-overlapping data (Ti23) consisted of all three single flight data

4SD denotes standard deviation

¢CV deno
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Fig. 2

tes coefficient of variation

‘able 4 Differences between two single flight data concerning DSM and DTM

DSM DTM
Si*-S,* Si*-Ss* Sp*-S5* S1*-Se* Si*-Ss* Sp*-Ss*
Mean error (m) -0.04 -0.05 -0.02 0.01 -0.01 -0.02
RMSE (m) 1.64 1.63 1.67 0.24 0.28 0.22

*Three sets of single flight data, i.e., Sy, Sz, and S
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The relationship between two single flight data (S, and S;) concerning the elevation of DSM
(left) and DTM (right)

The line in each graph indicates 1 : 1 correspondence. The number of data in each graph
coincides with the number of pixels within study area.

J. For. Plann. 13:249-258(2008)

253



254

Fig. 3
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Characteristics of detected and undetected trees for
the same trees among all datasets, and trees which
were either detected or undetected among different
datasets

We denoted such trees as “ambivalently detected
trees”. This figure shows the relationship between
mean crown radius and tangent (tand) consisted of
horizontal distance and viewing angle (depression or
elevation angle) from a given field treetop to the
closest field treetop (see Fig. 1). Black dots, crosses,
and white triangles denote detected, undetected, and
ambivalently detected trees, respectively.
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detected or undetected among different datasets were shown
in Table 7 and Fig. 3, and we denoted such trees as
“ambivalently detected trees”. We can see most of the detected
trees have depression angles and their crown radii are larger
than that of undetected trees. On the contrary, most of the
undetected trees have elevation angles. Moreover, many
ambivalently detected trees exist around the border between
detected and undetected trees, although some of them exist
beyond the border in Fig. 3.

Table 8 shows the results of the statistical significant
difference for the average of tree heights among groups,
including filed data and seven datasets. There were significant
differences between ki and /. for all datasets (p < 0.01). But
there were not significant differences among same laser-
sampling density datasets (p > 0.05). Moreover, some pairs
among different laser-sampling density datasets had signifi-
cant difference. In Table 7, we can see LiDAR-derived median
and mean tree height and RMSE for the estimates increase
slightly with the increase of laser-sampling density, but the
differences are small. Then,
relationship between &, and k. for all datasets as shown in
Fig. 4. As seen in this figure, there is no outlier in the

there was a strong liner

Table 5 Differences between locations of field tree and local maximum within each
crown segment for detected same trees among all datasets

5°* Se* Ss* Di2" Dis" Da3" Tia2s°
dx? -0.30 -0.22 -0.25 -0.24 -0.26 -0.25 -0.25
dy* -0.12 -0.02 -0.14 -0.09 -0.14 -0.09 -0.12
RMSE* 0.58 0.47 0.53 0.53 0.54 0.51 0.52

*Three sets of single flight data, i.e., Sy, Sz, and S3

*Three sets of double-overlapping data (D12, D13, and Das) consisted of S; and Sz, S; and Ss,

and Sz and Ss, respectively.

“One set of triple-overlapping data (Ty23) consisted of all three single flight data.

4 dx and dy denote the differences for easting and northing, respectively.

¢ RMSE means two-dimensional distance between the corresponding trees.
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Fig. 4 The relationship between LiDAR-derived and field measured tree heights for one single flight data (S.), one
double-overlapping data (D.s), and one triple-overlapping data (Ti.s)

S, Dy, Tias are described in the text.
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relationship between %, and h; for all datasets.
DISCUSSION AND CONCLUSION

Although there were seemingly no differences among all
datasets for DSM and DTM judging from Table 3 and 4, spatial
localization of each pixel within DSM and DTM was not
actually considered in the statistics. In fact, Fig. 2 shows many
outliers exist in the relationship between two DSMs. Most of
the pixels of the outliers are considered to be edge pixels of
individual-tree crowns. Because the location of each laser
measurement point by one flight does not always correspond
to that of another flight, there is no telling that either the
measurement point data around crown edges will belong to
crown pixels or ground pixels (i.e., gap pixels) for each flight
data. Moreover, the effects of both displacement and selection
of point data within each pixel around crown edges would not
be ignored during conversion point data into raster data,
especially when the laser sampling density is low. On the other
hand, there are few outliers in the relationship between two
DTMs in Fig. 2 and both mean errors and RMSEs for the
differences between two DTMs were smaller than that of
DSMs as shown in Table 4. The cause was considered to be
much less variation between adjacent pixels within DTM than
that of DSM, and indeed field ground surface generally have
much less variation than canopy surface above the ground.
But we should know that the number of null-pixels which had
been interpolated within DTM was much more frequent than
that of DSM in closed-canopy Japanese cedar forests
(TAKAHASHI et al., 2006), and the effects of the interpolation
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would also cause such less variation between adjacent pixels
within DTM.

As reported by ZIMBLE et al., (2003), local maxima within
DSM or CHM do not always correspond to treetops, especially
when the laser sampling density is low. Therefore, we applied
the tree matching approach based on crown segment because
this approach was considered to be less mismatching than an
approach which is based on using only local maxima. Table 5
shows the accuracy of the tree matching process used in this
study. The results in this table indicate that the tree matching
was considered as reasonable and proper. Moreover, we found
an interesting tendency that both dx and dy had negative
values for all datasets, thus indicating that LiDAR-detected
local maxima were off to southwest from locations of stems.
This is because even coniferous tree stems are not always
upright on steep slops and the treetops are likely to tilt toward
the valley side (HEURICH et al., 2003; TAKAHASHI et al., 2005a).
In fact, the study area was southwestern slope as shown in our
previous study (TAKAHASHI et al., 2005a). The effects of this
tendency on tree height estimation will be discussed later on.

Although the detection rates of tree were not so different
among all datasets, the variation of the number of detected
trees among double-overlapping datasets was smaller than that
of single flight datasets as shown in Table 6. This indicates that
if the laser-sampling density increase, the stability to detect
trees would rise. Also, the number of detected same trees
among same laser-sampling density datasets increased with
the increase of the density, thus indicating that the probability
to detect same trees would rise by the grater laser-sampling
density. Therefore, greater laser-sampling density would be

Table 6 Detection rates of trees, tree height estimates, and root mean square errors (RMSEs) between field measured and

LiDAR-derived tree heights

Single flight* Double-overlapping”  Triple-overlapping®
Si Sz Ss Diz Dis D23 Ti2s Field data?
Number of detected trees for each dataset 160 168 163 163 162 164 160
Detection rates of trees for each dataset (%) 62 65 63 63 62 63 62
dNumber of detected same trees among same laser-sampling density 145 145 145 154 154 154 160
atasets
Detection rates of same trees among same laser-sampling density 56 56 56 59 59 59 62
datasets (%)
Number of detected same trees among all datasets 142 142 142 142 142 142 142
Detection rates of same trees among all datasets (%) 55 55 55 55 29 G153 55
Median tree heights for detected same trees among all datasets (m) 22.0 22.0 22.0 222 222 221 222 21.1
Mean tree heights detected same trees among all datasets (m) 219 220 220 221 221 221 222 21.4
“RMSE of tree height estimates for detected same trees among all 0.85 0.90 0.90 097 095 096 1.02

datasets (m)

*Three sets of single flight data, i.e., S;, Sz, and S

"Three sets of double-overlapping data (D12, D13, and Das) consisted of Sy and Sz, Sy and Ss, and Sz and S, respectively.

“One set of triple-overlapping data (Ty23) consisted of all three single flight data.

“The numbers of field tree were 260 within the plot.
“RMSEs were computed using Eq. 2 in the text.

J. For. Plann. 13:249-258(2008)
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better for both the stability and reproducibility of detecting
individual-tree crowns. However, we should note that the
relationships between laser incident angle (Table 3) and the
detection rate of trees for single flight datasets (Table 6). The
acuter the incident angle became, the greater the detection
rates became in this study site, although the magnitude of
incident angle was fairly small for flight data. HOLMGREN et al.,
(2003) simulated the effects of laser scanning angle on tree
height estimation, and they showed that laser height
percentiles and proportion of canopy returns changed with by
increasing scanning angle within 20m x 50m simulated forest
plots. Similar simulations and results were found in LOVELL et
al., (2005). Considering these reports, detection rates of trees
whose treetop-elevation is low would be decreased with the
increase of scanning angle. Therefore, not only the effect of
laser-sampling density, but also the effect of flight direction of
LiDAR systems, laser incident angle, terrain slope angle, and
slope aspect on the detection of individual-tree crowns would
be crucial in mountainous forests. These effects should be
investigated in detail in the future.

As shown in Table 7, the detection rate of same trees
among all datasets was 54.6%, and rates of ambivalently
detected trees and undetected trees were 14.6% and 30.8%,
respectively. Both Table 7 and Fig. 3 indicate that if a given
field tree has relatively lower treetop-elevation and smaller
crown radius than that of the nearest field tree, and these trees
are close to each other, the lower tree is difficult to detect in
mountainous coniferous forests. Similar tendency for the
detection of individual-trees seems to be found in boreal
coniferous forests with flat terrain (PERSSON et al., 2002).
Conversely, it is indicated that most of the dominant and co-
dominant trees would detect accurately in middle-aged
Japanese cedar plantations in mountainous forests by the laser-
sampling density of 3 or 4 points/m* as shown in Fig. 3. Many
ambivalently detected trees existed around the border
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between detected and undetected trees in Fig.3, but some of
them whose tangent were small existed beyond the border.
Although it is not known the exact reason, such trees might be
surrounded another neighbor trees with higher treetop-
elevation. Moreover, we should note that trees whose crown
radius with smaller than 1m can hardly detect. This is
considered to be essentially the limitation of detection by 3% 3
local maximum filtering for DSM whose resolution was 0.5m.
LiDAR-derived median and mean tree heights for the
detected same trees were slightly greater than that of field
measured tree heights in this study site (Table 6). As shown in
Table 8, there were significant differences between 7 and /.
for all datasets (p < 0.01). One of the reasons for the
differences might be insufficient correction for field individual-
tree heights measured in 2003. However, it would be difficult
to determine each tree height growth of all standing trees
within the plot exactly because even the sampled trees had
variations in height growth as shown in Table 1. Instead, we
should note another possible reason, for example, the
horizontal positional error between the field treetop and the
stem as mentioned before. In fact, the results in Table 5
indicate that LiDAR-detected local maxima tilted toward the
valley side (i.e., southwestern) from locations of stems. LIDAR-
derived tree heights calculated with a distance between local
maximum on DSM and DTM just below the local maximum
would be overestimates in forests with steep slopes (HIRATA,
2004; TAKAHASHI et al., 2005a). Moreover, the magnitude of
overestimates increased with the increase of laser-sampling
density (Table 6). According to Gaveau and HiLL (2003), the
failure of sampling treetops because of an insufficient laser-
sampling density is likely to occur in coniferous woodlands
where crown shape is more conical than in broadleaf
woodlands where crowns are more rounded. NASSET and
OKIAND  (2002) concluded that the observed standard
deviations in tree height residuals in LiDAR data for a forest

Table 7 Characteristics of detected, ambivalently detected, and undetected

trees
Detected® Ambivalently detected® Undetected”
Rate (%)* 54.6 14.6 30.8
Crown radius (m)*¢ 2.2 1.5 1:2
Tangent -1.2 0.2 2:0
Horizontal distance (m)" 2.4 1.9 1.7
Vewing angle (degree)" -31.5 3.9 45.9

*Detected same trees among all datasets

" Undetected same trees among all datasets

“Trees which were either detected or undetected among different datasets

4 Percentage of the number of detected, ambivalently detected, and undetected trees

¢ Mean crown radius

"Tangent (tand) consistes of horizontal distance and viewing angle (depression or
elevation angle) from a given field treetop to the closest field treetop (see Fig. 1).
Depression and elevation angle have negative and positive value, respectively.
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dominated by Norway spruce (Picea abies) could be improved
by increasing laser-sampling density. Considering these
reports, the phenomenon that the errors of overestimations
were increasing with the increase of laser-sampling density is
not surprising.

Fig. 4 indicates that the accuracy of LiDAR-derived
individual-tree heights was really high for all datasets. We
should note that the number of detected small trees between
10 m and 18m height are increasing with the increase of laser-
sampling density, and such trees fit correctly each regression
line in this figure. According to the regression analysis, the
intercepts of all regression equations did not significantly
differ from zero (p > 0.05), thus indicating that the mean error
of the regression equations was not significant. Moreover, the
slopes for all regression equations could be statistically

regarded as one (p > 0.05), thus indicating that the error
between .. and & was independent of tree size. Furthermore,
the difference between maximum and minimum RMSE for
tree height estimates was only 0.17m, and the maximum
RMSE was 1.02m in this study site (Table 6). This accuracy
was almost the same as we previously reported that we used a
helicopter-borne LiDAR system in the same site for individual-
tree height estimation (TAKAHASHI et al., 2005a). Therefore, all
results of this study indicate that although greater laser-
sampling density data can provide information of more varying
tree size, 3 or 4 points/m® of laser-sampling density data would
provide accurate individual-tree detection of upper-storey trees
and tree height estimates, given as RMSE, is approximately
Im in middle-aged Japanese cedar forests in mountainous
areas.

Table 8 Statistical significant difference for the average of tree heights
tested by Friedman test and Scheffe procedure

Group 1 Group 2 Chi-square statistic Pvalue

Field tree height Si 31.8597 0.0000 ax
Field tree height Se 86.5352 0.0000 o
Field tree height Ss 48.3386 0.0000 o
Field tree height D2 140.3292 0.0000 S
Field tree height Dis 109.5211 0.0000 i
Field tree height Do 130.7418 0.0000 o
Field tree height Tizs 210.5640 0.0000 i
S Se 13.3809 0.0634

Si Ss 1.7113 0.9741

Si D1z 38.4601 0.0000 i
St Dis 23.2400 0.0015 X
Si Dos 33.5217 0.0000 o
S Ties 78.6127 0.0000 ik
Sz Ss 5:5217 0.5966

Se Di2 6.4701 0.4861

Sz D13 1.3521 0.9870

Sz Dos 4.5446 0.7153

Se Ti2s 27.1273 0.0003 **
Ss D2 23.9460 0.0012 *x
S3 D13 12.3386 0.0900

Ss Das 20.0851 0.0054 *x
Sz Tizs 57.1268 0.0000 *x
D2 Dis 1.9067 0.9648

D2 D23 0.1696 1.0000

D2 Thzs 7.1009 0.4184

Dis D23 0.9390 0.9958

Dis Ties 16.3668 0.0220 *
Dos Tizs 9.4654 0.2209

*P<0.05 ** P<0.01

*Three sets of single flight data, i.e., S, Sz, and S3

"Three sets of double-overlapping data (Di2, D3, and Das) consisted of S; and Ss,

S and Ss, and S; and S, respectively.

“One set of triple-overlapping data (Ti23) consisted of all three single flight data.

J. For. Plann. 13:249-258(2008)
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Estimating Timber Stock of Ehime Prefecture, Japan

using Airborne Laser Profiling

Hayato Tsuzuki®', Ross Nelson** and Tatsuo Sweda

*1

ABSTRACT

The timber stock of mainland Ehime prefecture was estimated using airborne laser profiling data. Our
provisional analysis revealed that: 1) at 5,435km?, the laser estimate of land area obtained as a simple product of
flight path length and its 4km width was fairly consistent with the figure of 5,455km? by the Geographical Survey
Institute, considered the most reliable of the government statistics; 2) on the other hand, at 176 million m? for the
entire prefecture our estimate of standing timber stock turned out to be twice as much as the government figure of
87 million m?; 3) judging from the precision in land-area estimation and results from other research, our estimate is

considered more likely to represent the actual timber stock than the government figure; 4) thus airborne laser

altimetry would provide more accurate national forest carbon budget for the Kyoto Protocol than does the existing
national forest inventory; 5) at the present density of laser profiling transects, 4km apart from each other, however,
no reasonable accuracy is expected at the municipality level.

Keywords: timber stock, airborne laser profiling, prefecture-wide inventory, Ehime prefecture, Kyoto protocol

INTRODUCTION

Japan is now determined to base its forest carbon budget
accounting of the Kyoto Protocol on the Forest Inventory
Book (FIB), an original system of inventorying the nation’s
forest resources by sub-compartments as tiny as one-tenth of a
hectare. However, the FIB is reputed for its inaccuracy due
partly to its obsolescent bookkeeping system and partly to
lack of field checks in recent decades, and without major
reform it may not survive long beyond the first commitment
period of the Protocol. This study was intended to develop a
new system of national forest inventory using airborne laser
altimetry with particular aims of: 1) developing a prefecture-
wide laser altimetry inventory system; 2) assessing prefectural
forest carbon budgets using multi-temporal airborne laser
profiling at 2-year intervals, and 3) comparing the resulting
inventory and carbon sequestration estimates with the

Corresponding author: Hayato Tsuzuki

*! Faculty of Agriculture, Ehime University
3-5-7 Tarumi, Matsuyama 790-8566 Japan

‘ Biospheric  Sciences Branch, NASA-Goddard

Space Flight Center

Greenbelt, MD 20771 USA

J. For. Plann. 13:259-266 (2008)

corresponding official figures of the government. In this paper
the first outcome of the project, i.e. an estimate of prefectural
forest inventory resulting from the term-head airborne laser
profiling and its comparison with the existing government
statistics are reported.

MATERIALS AND METHODS
Study Area and Laser Profiling

Ehime (5,677.12km?) is one of the 47 prefectures of Japan,
comprising of mainland (5,455.38km?) and numerous small
islands (221.74km®) to the north and west in the Seto Inland
Sea (Fig. 1). The terrain is rugged especially along the
Ishizuchi (1,982 m a.s.l.) Range, which constitutes the border
with Kochi prefecture to the south. According to the
government statistics 71% of the prefecture or 3,870km? is
forested, of which approximately 3/5 is plantations primarily of
Cryptomeria japonica and Chamaecyparis obtusa and the
remaining 2/5 is secondary natural forests of mainly
broadleaved species (OcHI et al., 2006). Approximately 10% of
the forested land is nationally owned and managed directly by
the Forestry Agency (SHIKOKU REGIONAL FOREST OFFICE, 2006).

The term-head laser profiling mission with NASA’s
Portable Airborne Laser System (PALS, NELSON et al., 2003),
mounted on-board a Bell 206 helicopter was flown September
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Fig. 1 Study area of Ehime prefecture and profiling transects

10-17, 2005 over the mainland Ehime in a series of 23 parallel
flight lines four kilometer apart, totaling 1,358.7km (Fig. 1).
The helicopter was flown 200m above ground at a target
ground speed of 180km/hr with an alternating first/last pulse
altimetry data retrieval frequency of 400Hz. However, slow
climb-ups and -downs over the steep terrain reduced the
nominal data retrieval interval of 12.5cm along the flight track
to an overall average of 8.5cm with a local minimum as short
as 3cm.

Land-area Estimation

As a way of assessing the accuracy of timber stock
estimation by laser profiling, laser-based land area was also
estimated and compared with corresponding government
figures from the Geographical Survey Institute (GSI,
http://www.gsi.go.jp). The laser estimates were obtained as a
simple product of flight length and width of 4km between the

flight lines. For a fair comparison, insular areas totaling
221.74km* were discounted in the government figures. Only
the islands equal to or larger than 1km?* are accounted for in
the insular total, but the remaining error was deemed
negligible.

Timber Stock Estimation

The standing timber stock was estimated on a basis of its
correlation with the area of vegetation profile induced from
airborne laser profiling data as a difference between canopy
and topographic profiles (Tsuzuki, 2004; TSuzukl et al., 2006),
i.e. according to a regression of standing timber stock V'
(m*/ha) on cross sectional area S (m?/m) of vegetation profile

flx),
V=aS=aff(x)dx 1)

The coefficient a in the above equation was determined
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Fig. 2 Regression of standing timber stock on vegetation
profile area

by the regression of actual standing timber stock measured on
the ground on the vegetation profile area calculated from the
laser altimetry data as shown in Fig. 2.

Timber stock measurement was made in sample plots
established directly under the laser profiling flight path. A total
of 34 sample plots were established, one each in 16 stands of
Cryptomeria japonica, 12 of Chamaecyparis obtusa and six of
mixed broadleaved species. The plot size varied from 21 to
829m* depending on the stand height but was made greater
than the area of a square with its side length equal to stand
height. In each plot stem diameter at breast height (dbh) was
censused and then converted to stem volume by allometric
volume equations made from a total of 219 sample trees
consisting of 58 C. japonica, 79 C. obtusa, 23 Pinus densiflora
and 59 broadleaved species, felled in and around the sample
plots and measured for stem volume. Rather than differentiat-
ing by species, only two volume equations, i.e., one for conifer
and the other for broadleaves were used since no significant
difference was found among the coniferous species.

Eventually, the coefficient @ turned out to be 31.9
(dimensionless) as has been shown in Fig. 2. The validity of
the coefficient was tested then by: 1) dividing the sample plots
randomly into equal halves of 17 plots each, and 2) comparing
the measured timber volume of the first half against its
estimate made using coefficient ¢ determined from the other
half. The process was repeated 10 times by random selection
of plots. Note that the above coefficient is still a temporary
figure since the plot measurement and data compilation are
still under way for the ultimate total of 200 plots.

In this process of standing timber stock estimation, no
prior delineation of forest area from other land use was
conducted for two reasons. Firstly, with minutely fragmented
land use over the past, delineation of forests from other land

J. For. Plann. 13:259-266(2008)

use is too complicated and tedious even for possible
improvement in accuracy it may bring. Secondly, with the first
and last returns registering the same clearance in the area
devoid of vegetation, no vegetation profile is formed, and thus
the other land use than forest do not virtually affect the timber
estimate even if other land-use categories are included in the
analysis. The only sources of possible over-estimation are
small forested parks in and in the vicinity of city, shade trees
along the road etc. for which 3% allowance was given in the
final estimate. The timber stock estimation was tallied by
municipality and compared with the corresponding govern-
ment statistics.

The government estimates of timber stock used for
comparison was the forest inventory book (FIB) compiled in
basically the same method throughout Japan but with different
yield tables specific to districts as well as to species and site
quality. In Ehime prefecture, five forest districts of nearly the
same area are distinguished by major watersheds. Species
distinguished in each district are C. japonica, C. obtusa, Pinus
spp., Quercus spp. and other broadleaves with five site quality
classes for conifers and three for all the broadleaves. Based on
a prefecture-wide yield survey made 40-50 years ago, the yield
tables were compiled to give standard annual volumetric
increment by age class of five-year interval for each species
and site class. With reference to these yield tables by a
mainframe, standing timber volume is routinely calculated by
adding corresponding increment year after year for each sub-
compartment consisting of trees of the same age and same
species category. The sub-compartment timber volumes are
added for the compartment totals, which then are added for
municipal totals and subsequently for the prefecture total with
the harvested sub-compartments reset to null according to the
obligatory harvest reports from forest owners.

Widely reputed inaccuracy of the FIB is generally
considered to have arisen from a multitude of causes. The
most significant one of them would be complete lack of field
checks in the last few decades due to declining forestry
budgets and personnel to result in accumulated errors.
Another could be the deviation in the yield tables made when
the nation’s forests were significantly younger with over
representation of younger stands and under representation of
mature stands.

RESULTS AND DISCUSSIONS
Validity of the Laser Estimates

The results of the wvalidity test for the regression
coefficient @ and estimated timber stock by randomly halving
34 sample plots into estimation and verification groups are
given in Table 1. In each round of the test repeated 10 times,
timber stock of the verification group was estimated by a
regression established using data from the estimation group,
and then checked against measured counterparts. First of all,
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Table 1 Validity tests for regression coefficient a of equation (1)

Correlation of vegetation

Mean timber stock

: _ P Error
profile area with standing ’ (mo’/ha)
Con'elalt:t on ‘Lgvel of Vo) measured N
coefficient  significance (Vacr) o9
, Cbvese 0843 <0.0001 33538 .46 43 65
Verso 0.767 <0 001 30.786 338 375 -10.0
, Gbvese 0858  <00001 32545 34 30 -5
Verso 0785 <0 0001 31.256 408 422 -33
, Obvese 0773 <0001 32529 %m0 .00
verso 0.866 <0 0001 31217 414 435 48
g Soverse 0804  <00001 29054 %62 4% AAT1
Verso 0857 =0 0001 34 864 432 375 15:2
5 Sovese 0790  <00001 30385 34 3% A4
verso 0853 <0 0001 33913 448 413 85
g Obvesse 0872 <0001 517 3M 406 o768
verso 0746 <00.001 32432 421 407 3.5
, Sbverse 0838  <00001 32039 . 379 393 .38
VErso 0781 <0.001 31.799 414 419 -1.1
g Cbvese 0865  <0.0001 835 .82 4 10
Verso 0.730 <0.001 29.876 410 465 -11.8
5 _obverse 0754 <0001 30459 428 458 65
Verso 0849 <0 0001 32849 355 354 02
obverse 0763 <0001 30955 398 428 75
10 verso 0.866 <0.0001 32817 396 384 a2
Wean 31.908 396 406
sSD 146 33 32
C.V. 456 84 79
SE. 035 81 78

the 20 correlation coefficients between the standing timber
stock V and the vegetation profile area S calculated using 20
sets of randomly chosen halves of 17 plots were no less than
0.73 and highly significant with the level of significance no
greater than 0.1%. Small standard deviation also indicates that
the correlation is consistent and stable with data from as few
as 17 sample plots.

The mean of 20 regression coefficients calculated using
data from 20 estimation halves turned out to be 31.9
(dimensionless) with the standard error of only 0.35
(dimensionless), indicating the robustness of the regression
coefficient. The difference between the observed
standing timber stock of 17 sample plots and their estimated
counterparts ranged from -75 to 57m*/ha, or -17.1% to 15.2% in
terms of relative error with an overall mean and standard error
of 396 +8.1m*/ha in the estimated timber stock against 406 +
7.8m*/ha in the observed timber stock.

On the basis of the significant correlation and robust
regression indicated above, the regression coefficient of
a=31.9 based on all the 34 sample plots was judged as valid for
estimating the prefecture-wide timber stock.

mean

Land-area Estimation and Comparison with Government
Figures

The laser estimates of land area and standing timber
stock by municipality are shown in Table 2. The total area of
mainland Ehime differed from the GSI figure by only 0.38%,
indicating that our rough laser estimate by rectangular area of
transect length and width of 4 km should be good enough for
the prefecture level area estimation. When it comes to the
comparison by municipality, however, the discrepancy became
much more conspicuous with estimation errors over 10% for
six of 19 municipalities. The largest error was found for Ikata,
where one flight line (line 0 between lines -1 and 1 in Fig. 1)
had to be omitted due to flight restrictions in a 5-km bound of a
nuclear power station. For more precise estimates at the
municipality level, the flight lines have to be significantly
closer.
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Table 2 Comparison between government statistics and airborne laser estimates in land area and standing timber stock

Land Area Standing Timber Stock
Sorver s g Covermen —

o) (kem?) . (million m?) (million m?) / Gov.

Ehime 5,455 5,435 -0.38% 87.32 17553 2010
Shikokuchuo 420 362 -14% 8.62 1289 150
Niama 234 285  +22% 3.95 857 217
saijo 509 511 +0% 8.68 1514 174
Tabari 286 281 -2% 2.60 667 256
Matsuyama 386 354 -8% 3.74 826 221
Iyo 194 214 +10% 1.28 560 437
Toon 211 215 +2% 3.98 693 174
Masaki 20 16 -19% 0 0.07 o
Tobe 102 106 +4% 150 380 254
om 432 430 1% 6.53 1449 222
Uchiko 300 209 +0% 498 1073 215
Yawatahama 130 128 2% 152 329 2186
Tkata 94 55 -42% 0.63 115 181
Seiyo 515 523 +2% 9.25 1805 195
Kumakogen 584 611 +5% 13.94 2673 192
Uwajima 459 455 1% 6.44 1331 207
Kihoku 242 235 -3% 479 916 191
Matsuno 99 113 +15% 1.75 427 244
Ainan 238 242 +2% 313 641 205

Timber Stock Estimation and Comparison with Government
Figures

Our timber stock estimates differed unequivocally from
the government counterparts, even at the prefectural level. At
176 million m’, our estimate turned out to be twice as much as
the government figure (OcCHI et al., 2006; SHIKOKU REGIONAL
ForesT OFFICE, 2006; 2005; 2004; 2003; 2002) of 87 million m?®.
Both estimates seem responsible for this disagreement but the
government figure seems much less representative of the
reality than the laser estimate for the following reasons. First
of all, the government statistics has long been notorious for
excessive under-estimation (FujmoTo et al., 2007; MATSUMOTO,
2003; SHIRAISHI, 1999) as has already been mentioned.
Secondly, in our two-way comparison of the government
statistics and airborne laser estimate against actual timber
cruising results for a 200 ha tract in the Tomakomai National
Forest in northern Japan, the former under-estimated the
reality by a factor of 0.56, whereas the latter over-estimated
only by a factor of 1.09 (SWEDA and Tsuzuki, 2006). Thirdly, in
the “National Forest Resource Monitoring Survey” now in
progress to improve the government inventory in preparation
for the Kyoto Protocol forest carbon accounting, significant
under-estimation is becoming evident by the very hand of the
Forestry Agency responsible for the FIB (YOSHIDA, personal
communication). Taking all these factors into account and
considering possible over-estimation on the side of laser

J. For. Plann. 13:259-266(2008)

estimate as will be discussed below, 70 to 80% of the
discrepancy could be attributed to the government statistics
with remaining 20 to 30% to the laser estimate. This leaves the
most likely actual timber stock of the prefecture at around 155
million m® though a series of rigorous and extensive ground
truthing surveys are inevitable for a more decisive conclusion.

As was the case with the area estimate, the discrepancy
was more pronounced in the comparison at the municipality
level. The inconsistency tended to be relatively small in the
large municipalities with high standing timber stock, and more
outstanding in small municipalities like Masaki, Iyo and Tobe,
all adjacent to the prefectural capital Matsuyama with little
standing timber stock.

Possibility of Over-estimation in Laser Estimate

As has been mentioned above, our laser-based prefecture-
wide timber stock could well be over-estimating the unknown
reality for four reasons. The most obvious and significant of all
is counting abandoned and wooded farmland (Fig. 3) as forest.
Forests have been reclaiming a considerable area of farmland
over the past 40 years, as the nation's agriculture sector
dwindled and the population shifted to the secondary and
tertiary industries in and around cities. A considerable part of
these abandoned farmlands is still registered as such, but is
accounted as forest in our estimate due to their appearance.
Judging from the 10% disagreement in forested area between
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Fig. 3 Change from cropland to forest
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our laser estimate and the Ministry-of-Land statistics (MAEDA
et al., 2006), the reclaimed farmland could be as much as 10%
of the prefecture. By simple proportional discounting, this
accounts: for 10% over-estimation in our figure of standing
timber stock.

The second source of over-estimation could be attributed
to local over-estimation of canopy height. This occurred partly
from scarcity of ground returns in dense forests where thick
foliage prevented the laser beam to penetrate down to the
ground, and partly from the rigidity of spline curve used for
estimating continuous ground level. The latter tends to
shortcut missing ground returns to result in taller vegetation
height than actually is as shown in Fig. 4. The third source
could be the inherent tendency of over-estimation in our
method of timber stock estimation, which was also the case in
our previous work in the Tomakomai national forest
mentioned above. The reason for this has yet to be resolved.
The last and least likely source of over-estimation could be
isolated trees in parks and farmland as well as along the road.
However, urban and residential area and farmland respectively
cover only 4 to 5 and 10 to 12% of the prefecture respectively
(MINISTRY-OF-LAND,  http://lucky.tochi.mlit.go.jp/; MAEDA et
al., 2006), and trees and groves sporadically scattered over the
areas do not seem to affect the forested area very much.

CONCLUSION

its accuracy of land-area estimation,
laser altimetry can give reasonably accurate
estimates of standing timber stock for an area as large as a
prefecture, and therefore could well be applicable to the
national forest carbon accounting for the Kyoto Protocol or for
the post-Kyoto, as a transparent, consistent and accurate
method. However, the present density of profiling transects,
i.e. 4km apart from each other or 249 m/km? or altimetry point
density of 2,930 points/km? is not sufficient for reasonable
estimates at the municipality level. However the cost of
increasing the transect density is minimal in comparison with
the time and cost of maintaining the present system of national
forest inventory.

Judging from
airborne
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Measurement of Snow Depth Distribution in a
Mountainous Watershed using an Airborne Laser Scanner

Yoshio Tsuboyama™', Akira Shimizu**, Tayoko Kubota™*',
Toshio Abe™', Naoki Kabeya*' and Tatsuhiko Nobuhiro*'

ABSTRACT

The distribution of snow depth in a mountainous watershed located in northern Gunma Prefecture, Japan was
measured by applying an airborne laser scanner on three different occasions: an autumn period with no snow, a
mid winter period with maximum snow cover, and a late winter period with a maximum rate of snowmelt. Depth of
snow was estimated as the difference in elevation between the snow and the ground surface. Snow depth at the
opening of the meteorological station adjacent to the outlet of the watershed was compared with automatic readings
of the ultrasonic distance sensor equipped on the ground. Discrepancies between the airborne and the ground-
based snow depths were within an acceptable range for both periods, while slightly larger discrepancies were
observed between the values during the late winter period. Snow appeared to be deeper with increasing elevation in
most of the watershed, except the highest part where it became shallower. Decrease in snow depth from the mid to
the late winter periods was larger in the lower part of the watershed, suggesting higher rates of snowmelt. Overall,
the airborne laser scanner could measure snow depth at the flat opening quite accurately and was useful to capture
spatial and temporal patterns of snow depth over the watershed. However, it appeared that snow depth could be
calculated to be negative in some cases, typically when influenced by lodging of dense vegetation such as bamboo
grasses due to the weight of snow. While these results are encouraging, further research on the measurement of

snow depth on steep slopes and/or under tree canopies is recommended.

Keywords: hydrology, mountainous watershed, snow depth, airborne laser scanner

INTRODUCTION

Snow is one of the most common and familiar forms of
water in many climate regions. Snow cover affects the
processes of exchange of water and energy between
atmosphere and land surface, thus affecting catchment
hydrology as well as regional climate. From the view point of
water resources management of a river basin, it is important to
assess the amount of snow water over a catchment scale, but
this is difficult due to the spatial and temporal variability of
quantitative entities of snow such as depth and water
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equivalent (e.g., TARBOTON et al., 2000). For simplicity, the
distribution of snow in a mountainous catchment is often
represented using a linear relationship between elevation and
snow water equivalent (e.g., YAMADA, 1943; TaNI, 1996; SAITO et
al., 1999; MURAKAMI and YAMANOI, 2003).

A snow course survey has long been used to obtain
ground-based information on the spatial distribution of snow
depth and water equivalent in a mountainous watershed (e.g.,
YAMADA, 1943). However, it requires so much time and effort
that it is difficult to apply this approach to a large-scale
investigation, particularly in steep mountains with heavy snow.
For larger scale information, networks of snow gauging
stations are maintained in some cases (SEIDEL and MARTINEC,
2004), but the networks are often too coarse compared to the
heterogeneity of topography and land cover conditions and,
hence, insufficient to evaluate the spatial distribution of snow
properties.

By taking advantages of wide coverage, frequency, and
simultaneity of measurements, satellite remote sensing data
have been used for snow cover mapping at regional to global
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scales (SEIDEL and MARTINEC, 2004). Passive microwave
sensors have commonly been used (ARMSTRONG and BRODZIK,
2001; PULLIAINEN, 2006; WOoODHOUSE, 2006), which have
advantages over optical sensors in terms of their ability to
penetrate clouds, to be used during darkness, and to provide a
measure of snow depth or water equivalent (PULLIAINEN, 2006).
However, passive microwave sensors have some potential
shortcomings as well, such as relatively low spatial resolution
resulting from weak signal and long integration time (SEIDEL
and MARTINEC, 2004), which may prevent evaluating the
effects of rugged topography and different land covers on
snow distribution at a mid to small catchment scale. The
interaction of microwaves with different types of targets
arranged in both horizontal and vertical directions further
complicates the measurement and data interpretation
processes, and so an empirical correlation based on the
observed spectral brightness temperature differences may be
used as an alternative to detailed quantitative descriptions of
this process (WooDHOUSE, 2006). However, such an empirical
approach may cause a bias in measurements in deep snow
(DERKSEN et al., 2005). Moreover, a fundamental limitation of
satellite remote sensing techniques regarding snow cover
measurements in densely forested areas remains (SEIDEL and
MARTINEC, 2004). Consequently, an alternative and complemen-
tary method is necessary to obtain more detailed and accurate
information on spatial distribution of snow properties.
Recently, airborne light detection and ranging (LiDAR) is
increasingly used to obtain altimetric information about the
ground and various land cover surfaces. Applications include
forest measurement (e.g., NESSET and OKLAND, 2004) and

Tsuboyama et al.

snow depth estimation (e.g., OKAMOTO et al., 2004; AKIYAMA
and SATO, 2006). Airborne LiDAR is considered to be a useful
tool because of its high resolution and ability to distinguish the
ground surface from overlying layers such as vegetation,
although it is still being developed and needs to be studied for
operational application (e.g., HIRATA, 2005).

With this background, this paper presents the results of
using the airborne LIDAR scanner to measure the distribution
of snow depth over a steep mountainous watershed and
discusses some potential problems in relation to snow depth
measurements.

METHOD
Study Site

This study was conducted at the Takaragawa Forest
Watershed Experiment Station of the Forestry and Forest
Products Research Institute. The site is located at a longitude
of 139°01'E and a latitude of 36°51'N with an altitude ranging
from 805 to 1945 m (Fig. 1). Although the watershed is in the
northern part of the Kanto district, it experiences a Japan Sea
climate characterized by heavy snow during winter due to its
proximity to the divide.

Snow Depth Measurement

Airborne laser scanning over the watershed was
conducted on three different occasions: an autumn period with
no snow (October 24 to 26, 2003), a mid winter period with

0 05
S S,

Fig. 1 Map of the study site showing its location in Japan (left) and topography (right)
The contour interval of the topographic map is 20m.
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maximum snow cover (February 21 to 25, 2004), and a late
winter period with a maximum rate of snowmelt (April 16 to
18, 2004). A rotary-wing Aerospatiale AS350B (JA9807) aircraft
carried the Optech ALTM 1225DC laser scanning system.
Flight speed ranged from 50 to 250km h '. Flying altitude
ranged from 600 to 800m a.g.l. and the footprint diameter was
estimated to be 0.17m at the flying altitude of 800 m a.g.l. Pulse
repetition frequency was 25 kHz, scan frequency was 22 Hz,
and the maximum scan angle was 15 degrees. The sampling
density of the laser data approximated 1 pulse m * The
specifications and timings of laser scanning are shown in Table
1 and Fig. 2, respectively.

The laser data were pre-processed by the contractor
(Aero Asahi Corporation, Japan). Planimetric coordinates and
ellipsoidic heights were calculated for the last returns. Three
sets of 1-m grid digital terrain models (DTMs) were generated
by filtering and converting the planimetric coordinates and
corresponding heights using a kriging method.

Snow depth was then estimated based on these 1-m grids
as the difference in elevation between the snow and the

ground surface. Frequency distribution of snow depth in
relation to elevation was calculated based on these grid-based
estimates, except for the grid points for which snow depth was
calculated to be negative. Causes of negative values of snow
depth at some points will be discussed later.

As ground information, snow depth at the opening of the
meteorological station adjacent to the outlet of the watershed
was monitored every 10 minutes using a combination of an
ultrasonic distance sensor and a data logger (Campbell SR50
and CRI10X, respectively) mounted on the meteorological
tower. Snow depth at this opening was also surveyed by
digging a snow pit once a month, together with measurements
of vertical distribution of snow density. Because of differences
in spatial and temporal coverage of the airborne and the
ground-based methods, we used spatial averages of the laser
pulse data within the 1m?® square just under the ultrasonic
sensor, whereas the ultrasonic readings were averaged over
the time of laser scanning, which was estimated from the time
stamps of the main swaths covering this square.

Table 1 Specifications of the airborne laser scanner measurements

Pulse density ~1 pulse m *
Pulse frequency 25,000Hz
Scan angle +15 degrees
Scan frequency 22Hz

Flying altitude
Footprint diameter
Flight speed

600-800m a.g.l.
0.17m for the flying altitude of 800m a.g.l.
50-250km h !

Flight course interval 180m
Overlap between swaths 50%
Scanner Optech ALTM1225DC
Platform Aerospatiale AS 350B (JA9807)
10/24—26 22125 4/16~~18
2:5
| 1 |
20 | 2
B ;
£
=] 1.5
O
°
z 1.0 -
o
=
w 0.5
0
O N
2003 2004
Fig. 2 Timings of measurements in comparison with seasonal variations in snow depth

measured by the ultrasonic sensor

Solid circles and rectangles indicate the periods of the direct snow survey and the

laser scanning, respectively.
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Table 2 Comparison of the airborne and ground-based readings of snow depth

. Feb. 24 Apr. 16
Period
11:30-11:50 10:50-11:00
Ultrasonic sensor Minimum 1.96 0.52
Maximum 1.96 0.53
Average 1.96 0.53
Laser scanner 1.95 0.46
Unit: m

6 m

5

Fig. 3 Spatial distribution of snow depth during the mid (left) and the late (right) winter periods

RESULTS AND DISCUSSION
Ground Information

Snow depths calculated from the airborne laser scanning
and the ground-based ultrasonic readings at the flat opening of
the meteorological station are compared in Table 2. Snow
depth calculated from the laser data for the site was 1.95 and
0.46m for the mid and the late winter periods, respectively,
while the ultrasonic readings averaged 1.96 and 0.53m over the
respective periods (Table 2). Considering that the accuracy of
elevation measurement using an airborne laser scanner is
+0.15m (e.g., OKAMOTO et al., 2004), discrepancies between
the two methods were within an acceptable range for both
periods. Slightly larger discrepancies were observed between
the values during the late winter period, likely due to faster
snowmelt and/or larger spatial variability of snow depth at the
local scale.

Spatial Distribution of Snow Depth

The spatial distribution of snow depth estimated from
laser scanner measurements during the mid and late winter
periods is shown in Fig. 3. By comparing the images in Fig. 3
with the topography of the site shown in Fig. 1, it is clear that
snow generally becomes deeper with increasing elevation.

The relationship between snow depth and elevation was
evaluated more quantitatively by calculating the frequency
distribution of snow depth for 25 m interval elevation class
(Fig. 4). Fig. 4 suggests that the conventional linear
relationship between elevation and snow water equivalent is a
reasonable approximation, at least on an average basis, if the
snow density is spatially uniform. However, it also indicates
considerable deviations in both sides of these regression lines
and that snow depth decreases with increasing elevation for
the highest part of the watershed. Such an inverse relationship
between elevation and snow depth might have been
overlooked by conventional ground-based snow surveys.
Although its effects on catchment-scale water balance might
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Fig. 4 Frequency distribution of snow depth during the mid (left) and the late (right) winter periods
Solid circles indicate average snow depths in each elevation class (25m interval). The solid
lines represent the regression lines between snow depth and elevation.

Fig. 5 Decrease in snow depth from the mid to the late
winter periods

be small due to its relatively small frequency, this inverse
relationship is an important finding of this study.

Temporal Variations in Snow Depth Distribution

Figs. 5 and 6 depict spatially the difference in snow depth
from the mid to the late winter periods and its frequency
distribution for each elevation class, respectively. These
figures clearly show that the snow depth decreased to a larger
extent in the lower part of the watershed, likely reflecting
higher air temperature. Fig. 5 also indicates that the largest
decrease in snow depth appeared on slopes facing south,
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Fig. 6 Frequency distribution of decrease in snow depth

from the mid to the late winter periods

Solid circles indicate average decrease in snow depth
in each elevation class (25m interval). The solid line
represents the regression line between decrease in
snow depth and elevation.

reflecting a larger amount of incoming solar radiation. While
changes in snow depth should not only be associated with
snowmelt because they would also reflect other factors
including snow drift, avalanches, and spatially variable snowfall
during the intervening period, the quantitative information
presented in Figs. 5 and 6, together with Figs. 3 and 4, will
greatly help us to develop and validate a distributed snowmelt
model.

Factors Affecting Snow Depth Measurements

In calculating snow depth based on the grid DTMs, it
appeared that at some grid points the ground surface elevation
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exceeded the snow surface elevation, which resulted into
negative values of snow depth. Such points were distributed on
the gauging flume at the outlet, the steep slopes along the
stream, or the relatively gentle slopes above the tree line (Fig.
7). All of these points are thought to be the place where the
ground surface elevation was overestimated due to either
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interpolation errors resulting from lower pulse density,
typically on the water surface in the deeply incised stream
channels (Fig. 8), or measurement errors caused by lodging of
the dense vegetation cover such as bamboo grasses which
literally covered the true ground against the laser pulse (Fig.
9). While these negative values might not substantially affect

apparent grouns ...
apparent depth
snow surface. ... ..
true depth
-true ground.— .

pparent ground. |

apparent depth

snow surface— ¥

true depth

rug ground

Fig. 8

Schematic illustration of the cause of negative snow
depth as influenced by the water surface in a deeply

incised stream channel
Solid and dash lines indicate the paths of laser pulses
which were reflected and absorbed, respectively. Dot

lines indicate the interpolated ground surface.

Fig. 9 Schematic illustration of the cause of negative snow
depth as influenced by lodging of the dense
vegetation cover due to the weight of snow
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catchment-scale water balance due to its small fraction relative
to the entire catchment area (0.4 and 4.6% for the mid and the
late winter periods, respectively), it should be noted that some
of the other grid points could be under similar conditions
while the calculated snow depth at them happened to be
positive.

CONCLUSION

The results of this study suggest that the airborne laser
scanner could measure snow depth at the flat opening
accurately and was useful to capture spatial and temporal
patterns of snow depth over the watershed. An important
finding of the study concerns the inverse relationship between
snow depth and elevation for the highest part of the
watershed, which might have been overlooked by conventional
ground-based snow surveys. However, careful interpretation of
the results is needed in places where calculated snow depth
could be negative as a result of overestimation of the ground
surface elevation, typically as influenced by the water surface
in a deeply incised stream channel or by lodging of the dense
vegetation due to the weight of snow. Further research on the
measurement of snow depth on steep slopes and/or under tree
canopies is recommended.
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Expectation of LiDAR on Forest Measurement in Kyoto Protocol

Masahiro Amano*

ABSTRACT

Since United Nations Conference on Environment and Development, the world community has formally
recognized that forests have a crucial role to play mitigating global warming and it is necessary to evaluate their
role through repeatable, verifiable, and transparent scientific data analyses. The Kyoto Protocol and a subsequent
document, the Intergovernmental Panel on Climate Change (IPCC) Special Report and Good Practice Guidance for
Land Use, Land Use Changes and Forestry, recommended establishing a scientifically neutral method to evaluate
and monitor forest land changes and forest biomass dynamics with international standards. Satellite remote
sensing has been identified as one tool that can be used to measure forest area, rates of change in land use, location
of forest activities, etc. Also satellite data has many advantages that are not only transparent and verifiable but also
cost effective, including periodic data acquisition that is internationally available. When negotiators decided the
modality of the forest inventory scheme of Kyoto Protocol, they relate it to the imaged characteristics of satellite
remote sensing data. But the utility of data from satellites has some difficulties in estimating growing stock
changes, and in distinguishing some type of forest activities, such as thinning. In this context LiDAR has a
potentiality to provide measures for estimating carbon stock changes, greenhouse gas emissions, and removals
associated with forest lands under UNFCCC and Kyoto Protocol. The definition of forest under Kyoto Protocol
requires the minimum threshold of forest area, tree crown density, and tree height to be determined within specific
ranges. Satellite data have not work well to separate forests according to such a precise threshold. However, LIDAR
will be able to provide enough information to judge whether stands will be able to satisfy the definition of a forest.
This report discusses the advantages of LIDAR from the view point of the inventory scheme under Kyoto Protocol.

Keywords: LiDAR, Kyoto Protocol, Land Use, Land Use Changes and Forestry (LULUCF)

INTRODUCTION

Since Russia submitted an instrument of ratification for
Kyoto Protocol to the United Nations Framework Convention
(UNFCCC) on November 18, 2004, the Protocol was entered
into force on the 90days later- on February 16, 2005. Japan has
promised to reduce annual average of the greenhouse gas
(GHG) emissions in the first commitment period of the Kyoto
Protocol - from 2008 to 2012 - 6% less than the GHG emission
in 1990. Therefore Japanese Government developed a Kyoto
Protocol Target Achievement Plan in April 2005. This Plan
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called for the securing of carbon credit of 13million t from the
forest sector, which is equivalent to 3.8% of the 6% overall
reduction. However, Japanese greenhouse gas emissions in
2002 had increased 7.6% above the 1990 level and 8% more in
2003. Thus, a 14% reduction from the 2003 greenhouse gas
emission levels is required in order to achieve the target.
Therefore, it is important to achieve the targets from the forest
sector if the overall targets have any chance of being realized.

Of the six greenhouse gases identified in the Kyoto
Protocol, CO. is the gas that is absorbed by the forest. A
country’s reporting responsibility requires that the calcula-
tions be made using the standard established by UNFCCC.
This paper considers how LIDAR measurements might
contribute to the reporting on the amount of CO. absorbed by
the forest under the UNFCCC requirements.
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BACKGROUND: WHY FOREST IS VALUED
IN THE KYOTO PROTOCOL

Between 1850 and 1998, human activities emitted
approximately 270 billion t of carbon through the use of fossil
fuel and cement production. Also, land use change, primarily
deforestation, generated additional emissions of 136 billion t
of carbon. According to the latest FAO statistics, the area
of global forests continued to decline by approximately
12.5million ha every year in 1990s (FAO, 2001) and the volume
of carbon emissions due to land use change is still high.
Although the carbon in the atmosphere is sequestrated by
ocean and terrestrial ecosystem, the net increased in the
atmosphere carbon has been 176 billion t because the gas
emissions exceeded the amount absorbed. In terms of CO,
concentrations in the atmosphere, it increased from 285 ppm
to 366 ppm between 1850 and 1998 (IPCC, 2000). It is
estimated of the gas emissions due to land use change, 87% is
from conversion of forest land to other purposes, deforestation
and forest fire. The remaining 13% is due to cultivation of field
grasses. On the other hand, 2.3 billion t of carbon are
absorbed by the land every year. In the terrestrial ecosystem,
466 billion t of carbon is stored in the biomass and 2 trillion t of
the carbon is stored in the soil. Reduction of the temperate
forests and boreal forests started 5000 years ago in
Mediterranean area and China, and a large amount of forests
were reduced in North America in the 19" century. However,
since later than middle of the 20™ century, the forest area has
been stable or expanding in North America. In recent years,
the volume of the carbon absorbed annually has been
170million t in the US and of 110million t in the Western
Europe. According to FAO statistics, forest in advanced
countries absorbed 880million t of carbon annually (FAO,
2000). With these facts,

At the insistence of the US and Oceania countries, the
carbon absorbed and stored by the forest, field grass, and soil
became a part of carbon reductions measured in the Kyoto
Protocol. For example, if the forest absorbs 300 thousand t of
carbon in the country where its emission reduction target is
1million t, the actual amount of emission cuts required is only
700 thousand t of carbon. The role of the forest is addressed in
four parts in the Kyoto Protocol: the 3rd and 4th terms of the
Article 3, which defines reduction of the greenhouse gas
through domestic forests; Article 6, which describes reduction
of the greenhouse gas through the cooperation among
industrial countries (Annex I countries); and Article 12, which
determines reduction of the greenhouse gas through the
cooperation between industrial countries and developing
countries. Although the articles of the Kyoto Protocol were
agreed by COP3 in 1997, the modalities based on these
articles were not determined until the 4 years later at
Marrakesh Accords (COP7).
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Fig. 1 Definition of Forest under UNFCCC

ITEMS REGARDING FORESTS DETERMINED
IN THE KYOTO PROTOCOL

Definition of the “Forest”.

Each country has already determined the definition of the
forests by their law, the situations of land uses, and/or the
condition of the land coverage. Thus it will be lack of the
universal scale in calculation of the absorbed amount of carbon
by forest in each country as long as the definition is
universally undetermined. As shown in Fig. 1, the Kyoto
Protocol requests that each country should formulate the
definition of the forest by crown cover, mature tree height, and
the minimum area of the forest. However, the threshold values
are to be determined within the range shown in the Fig. 1
according to the natural and social conditions of each country.

Direct Human-induced Activity in the Article 3.4

The Article 3.4 describes “The net change in greenhouse
gas emissions by sources and removals by sinks resulting
from direct human-induced land-use change and forestry
activities, limited to afforestation, reforestation and deforesta-
tion since 1990, measured as verifiable changes in carbon
stocks in each commitment period, shall be used to meet the
commitments under this Article of each Party included in
Annex I”. This article defines “forestation” as the reforestation
and/or afforestation on lands that were used for purposes
other than forest prior to 1990. In other words, when the area
that had been used for other than the forests as of December
31, 1989 became forest, the average of the changes in carbon
stock in 5 years associated with increase or decrease of
accumulation in the land from 2008 to 2012 will be considered
as amount absorbed or emitted. Regarding reduction in
forests, when the forest as of December 31, 1989 is changed to
an alternative land use forest before December 31, 2012, the
average of the changes in carbon stock on the land in each
year between 2008 and 2012 will be recorded. In the case
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where the forest persists, the forest is treated as absorbing the
carbon. However, if severe forest thinning and final cutting are
implemented between 2008 and 2012 and the storage in 2012 is
less than the storage in 2008, this situation will be considered
as an emission. In the former case where forest land has been
converted to agriculture, there are no large changes made in
the carbon stock with the time passed, unlike the forest, and
therefore the carbon balance will be reported as “zero”.

Additional Human-induced Activity in the Article 3.4

The Article 3.4 targets the greenhouse gas reduction
through acceleration of the carbon sequestration capacity by
adding the human-induced activities to the existing forests
while the Article 3.3 describes the evaluation of the absorbed
amount of the forest newly established. With the precondition
of application mainly from the second commitment period, the
Article 3.4 of the Protocol describes “The Conference of the
Parties serving as the meeting of the Parties to this Protocol
shall, at its first session or as soon as practicable thereafter,
decide upon modalities, rules and guidelines as to how, and
which, additional human-induced activities related to changes
in greenhouse gas emission by sources and removals by sinks
in the agricultural soils and the land-use change and forestry
categories shall be added to, or subtracted from, the assigned
amounts for Parties ~”. However, concrete modalities are not
included in the Protocol. Also, there is a sentence in the end of
the 4™ Terms of the Article 3, “A Party may choose to apply
such a decision on these additional human-induced activities
for its first commitment period, provided that these activities
have taken place since 1990.” In the Marrakesh Accords
developed by COP7, the additional human-induced activity
includes a. wvegetation restoration, b. agricultural land
management, c. grass field management, d. forest management.
If there is any additional activity desired to apply in the first
commitment period, it shall be selected and reported. Japan
considers the forest management as an essential item for
achievement of the reduction target.

There were various discussions regarding how to
determine the activity as the forest management, and for the
tentative target limited to the first commitment period, it
reached the consensus on the forest with any human-induced
activities after 1990 as the source of absorption. However, the
contents of the human-induced activities are not discussed at
the negotiating scene of Kyoto Protocol. There are various
perspectives that some countries consider that the forest
stands covered by the forest planning and the forests in the
area with fire prevention taken are subjected to the forest
management activity to satisfy Kyoto Protocol. Some countries
consider only forests with actual specific operations, such as
thinning, weeding and fertilizer activities implemented after
1990, shall be subjected to forest management activities that
satisfy Kyoto. Since this is a politically sensitive issue and
forest operations differ depending on the natural and social

J. For. Plann. 13:275-278(2008)

277

environments in each country, the current view is that the
decision on the standards and definitions be left to each
country. Also, the current view is that the evaluations are to be
conducted by the countries and will determine whether the
evaluation decision would be appropriate at the time that the
inventory report is received by the secretariat office of the
United Nations Framework Convention on Climate Change
(UNFCCCO).

EXPECTATION OF LIDAR MEASUREMENT
ON KYOTO PROTOCOL

For the evaluation of forest CO. absorption in the Kyoto
Protocol, the negotiator’s first concern was the utilization of
satellite remote sensing technique. The Protocol requires the
measurement with transparent and verifiable method and
report, at the same time, if the remote sensing data are used, it
is easy to ensure the transparency and to verify the result
obtained. However, there are some problems that would not be
solved by the satellite data alone and that occurred in the
process of establishment of the concrete rules such as the
regulations in the 3rd and 4th terms of the Article 3. These
regulations require the measurement not only of above-ground
biomass but also debris on the ground, below-ground biomass
and soil carbon, some of which are impossible to be measured
by satellite remote sensing tools. The author is expecting the
resolution of many problems by complementary utilization of
the LiDAR, which may work as regional/national sampling
tool to provide detail forest resource profiling, and swath
sampling data, which include proxies of each carbon pool
requested by Kyoto Protocol. Major points are as follows.

Utilization of LiDAR for Definition of Forest

Japan is planning to determine for three thresholds of
forest definitions as following; the minimum area of the forest
is 0.3 ha, the crown cover is 30%, and tree height is about 5m.
The negotiators of each country who have been involved in
preparation of the Protocol thought that these forests would be
easily categorized by the satellite remote sensing technique.
However, using only spectral information, it is difficult to
determine the forest area where the crown cover of 30% is
strictly the threshold value and there are various tree species.
Also, 3D data are required for determining the tree height
data. However, it’s relatively easy to lay out the tree crown and
other gap parts, and to calculate the average forest stand
height in terms of the study example to which the LiDAR is
applicable. In addition, one of key factors needed to get good
estimation of tree height and differentiate forests with specific
crown cover is a size of footprint of LIDAR
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Afforestation, Reforestation and Deforestation in the Article
3.3 and LiDAR Utilization

It has been assumed that to detect areas of afforestation,
reforestation and deforestation would be easy using satellite
remote sensing data. it's actually difficult to
differentiate the young forests with tree height of 1-2m after
the operations of afforestation and reforestation from the grass
field and farm land. Also, it’s found that there were many
misinterpretations for differentiation between temporary bare

However,

land after harvest and that following replanting or conversion
of land use to other purposes. This suggests that it is difficult
to determine changes in the land coverage or the land use by
the satellite remote sensing data alone, although general
satellite remote sensing data easily detects many changes in
the land coverage. These considerations suggest that
continuous monitoring of the afforestation, reforestation and
deforestation of the specific location after 1990 will be
impossible with the sound accuracy of the current satellite
remote sensing data in the business-level. Therefore the
forests with the afforestation, reforestation and deforestation
will need to be collected as administrative information, at least
for a while.

If the LiDAR will be able to detect the terrain properly
where the remaining materials of the forest land are built
along the contour lines for afforestation, and young forests
regularly planted, the detection of afforestation, reforestation
and deforestation with the remote sensing will be easy.

Utilization of LiDAR for Additional Human-induced Activity
under the Article 3.4

Article 3.4 addresses forests that are sequestering carbon,
i.e., forest zones, and forests that are losing carbon through,
for instance, thinning. In Japan, the forested area that is
periodically thinned is large relative to that forested area that
is completely harvested and reforested. It is necessary to
determine the difference in the number of standing trees in
order to differentiate whether the forests are thinned or not.
As with crown cover, it is not easy to estimate the number of
standing trees by the satellite remote sensing data. However,
the estimation of the stand density using the LIDAR is not
difficult. In this case it is possible to differentiate the thinned
forests and the forests without thinning, from the relation
between the tree height and the stand density,

Amano

FUTURE OF KYOTO PROTOCOL
AND REMOTE SENSING

Even though the administrative data and conventional
forest inventory system are utilized for the report in the first
commitment period, there is no choice but to establish the
new remote sensing data-oriented reporting system in
consideration of transparency and verifiability for the second
session. Besides the report to the Protocol, agriculture and
forests are reported separately in the national inventory for
the greenhouse gas emission of the UNFCCC. However, in the
guidelines to be revised in 2006, the national land will be
divided into six land uses and be reported collectively. Also,
any changes made in the land use shall be reported separately.
Therefore monitoring of the land use on a nationwide scale is
necessary and the guideline emphasizes utilization of the
remote sensing techniques. Regarding the forest sector, a
report of the CO. absorption with a high accuracy will be
available if the measurement of the change in forestry biomass
by the LIDAR is periodically undertaken. Judging from the
trend of current negotiation, e.g., a report is required every 5
years, the dependence on the ground survey is not rational in
terms of data collection and processing. Therefore establish-
ment of the forest biomass monitoring system, which is a
combination of permanent monitoring plots with remote
sensing by LiDAR, is desired.
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Stability of Surface LiDAR Height Estimates on a Point and Polygon Basis
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ABSTRACT

Airborne scanning LIDAR (Light Detection and Ranging) data has significant potential to update, audit,
calibrate, and validate operational stand-level forest inventories by providing information on canopy height, vertical
structure, and ground elevation. However, using LiDAR data as an operational data source in a sampling context
requires repeatable and consistent attribute estimation (i.e. height), from data collected over several acquisition
flight lines. We examined the consistency of LiDAR height estimates obtained from the Scanning LiDAR Imager of
Canopies by Echo Recovery (SLICER) instrument over Jack pine (Pinus banksiana, var. Lamb) and black spruce
(Picea mariana, var. Mill.) forest stands in central Saskatchewan, Canada. Two analyses were undertaken: first,
estimated tree heights derived from pairs of LIDAR returns, acquired from multiple flight lines and within 9m of a
single LiDAR footprint, were compared to assess the consistency of height estimates (point stability); secondly,
height estimates from multiple flight lines within individual forest inventory polygons were compared to assess the
consistency of within-polygon estimates of tree height (polygon stability). The point stability analysis indicated that
over all forest classes estimates of height were consistent, with 94% of LiDAR returns (n = 15,896) having a pair-wise
height difference within = 5m. On a polygon basis, both between- and within-flight line standard deviations were
considered. Results indicated that the within-polygon variability in estimated tree heights was captured by LiDAR
data collected over any portion of a polygon. This result suggests that the inventory polygons are homogenous with
regards to height (and related variability) and may be characterized with LiDAR, independent of actual flight path.

Keywords: LiDAR, forest inventory, Landsat, SLICER, BOREAS

INTRODUCTION

Both private forest companies and public forest
management agencies require information collected at a range
of spatial scales to facilitate short and long term planning.
Strategic information is needed to plan for timber production
in anticipation of market trends and needs over long time
horizons. Since this type of planning is often conducted over a
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discrete forest management unit, it is possible to rely on
information from an objective field sample (HOLMGREN, 2004).
However, the actual allocation of forest operations across a
landbase requires estimates of forest variables for each and
every forest stand. Given that a full-fledged, field based forest
inventory is both operationally and cost prohibitive in most
jurisdictions, the ability to estimate forest stand parameters by
remote methods is necessary.

For industrial forest management activities the almost
universal method used to derive spatial information on forest
structure and condition is through the manual interpretation of
tree heights from large-scale stereo aerial photography,
supported by a sample of field site visits for calibration and
quality assurance. Whilst tree height is not the only, or often
the primary, driver of forest inventories (often stand volume or
diameter at breast height is what is required (NELSON et al.,
2003)), there is generally (especially in young to mature forest
stands) a strong relationship between height and diameter,
volume, stand density and ultimately production. Aerial
photography, like most optical remotely sensed imagery,
provides only a 2-dimensional representation of forests, which
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requires inference to be applied when estimating vertically
distributed parameters (WULDER, 1998). Some examples of
factors which affect the accuracy of height estimation in forest
inventory include film emulsion, scale, focal length, time of
day, shape of tree, character of shadow, character of the forest
(e.g., stand density, complexity of stratification), topography,
observer skill, and measurement technique (AVERY and
BURKHART, 2002). Alternatively, airborne scanning LiDAR
(Light Detection and Ranging) data provide a 3-dimensional
representation of forest structure. Laser altimetry determines
the distance from a sensor to a target using a beam of light and
recording the time taken for the light to travel to the target
object and return. This 3-dimensional view of forest structure
allows for estimates of vertically distributed elements of the
forest, making LiDAR data well suited to measurement of
individual trees (NASSET and OKIAND, 2002), tree heights
(MAGNUSSEN and BOUDEWYN, 1998), and canopy heights
(NELSON, 1997).

LiDAR systems applied to forestry applications can be
categorized as either ‘discrete return’ or ‘full waveform’
systems and differ from one another with respect to how they
vertically and horizontally sample a canopy’s three-dimen-
sional structure (LM et al., 2003). Discrete return systems
typically allow for two (first and last) or sometimes up to five,
returns to be recorded for each pulse. Conversely, a full
waveform LiDAR system senses and records the amount of
energy returned to the sensor at a series of equal time
intervals. In either case, the sensor produces a beam which
results in a circular sampling area (i.e., footprint), which
increases in size with distance from the sensor. The footprint
for most discrete return systems is on the order of 0.2 to 0.9
m. For the full waveform systems, the footprint size may vary
from 8m to 70m (MEANS, 1999; HARDING, 2000; LM et al., 2003).
Recently, Hug et al. (2004) introduced the LiteMapper-500
capable of waveform digitization over a small footprint (0.4m at
flying at 800m above ground level) based on the RIEGL LMS-
Q560 laser scanner.

The SLICER (Scanning LiDAR Imager of Canopies by
Echo recovery) instrument is an example of a full waveform
LiDAR system which can be flown high and fast enabling the
characterization of large areas in a short mobilization period
(BLAIR et al., 1994; HARDING, 2000). The instrument is also well
suited for flying transects enabling sampling and attribute
extension. SLICER also provides for an intermediate scale of
information (footprint 5-10m) between small-footprint discrete
systems and satellite based systems such as the GLAS (ZWALLY
et al., 2002). The SLICER instrument has demonstrated
capability to accurately estimate forest canopy heights in both
deciduous (LEFSKY et al., 1999) and coniferous (MEANS et al.,
1999) dominated stands. LIDAR data has also been shown to
accurately estimate biomass and other structural forest
attributes, over a wide range of species and structural
vegetation types, although most studies have focused on single
dataset calibration (LEFSKY et al., 2005). More recently, LIDAR
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technology has gained widespread acceptance for large-scale
operational mapping. Recent examples include applications in
Norway (N&SSET, 2004) and the US state of Delaware (NELSON
et al., 2003). HUDAK et al. (2002) demonstrated an approach for
extrapolation of small footprint LiDAR vertical information
through the use of auxiliary image data. WULDER and SEEMANN
(2003) used SLICER data and segmented Landsat to update a
polygon based forest inventory.

The use of LIDAR data as a sampling tool raises a number
of issues related to updating, calibrating, and validating
standard forest inventory. To address these issues, we
investigate the stability of height estimates on a per point basis
comparing multiple LiDAR returns at the same location, and
the agreement between multiple LiDAR flight lines through
individual forest inventory polygons in a homogenous forest.

METHODS
Study Area

The data used for this analysis was established as part of
the Boreal Ecosystem - Atmosphere Study (BOREAS) in
central Saskatchewan, Canada (SELLERS et al., 1995). For the
purposes of this study, a 7,500km?* study area was defined to
represent a variety of boreal forest species types and forest
conditions (Fig. 1). The study area is approximately 115km (E-
W) and 65 km (N-S) and is located within the Saskatchewan
Plains Region of the Great Plains Province of North America.
The topography of the study area is gently undulating, with
elevations ranging from 400 to 700m (SELLERS et al., 1995).

The mixed forest in central Saskatchewan is close to the
southern limit of the boreal forest and composed of aspen
(Populus tremuloides Michx.) and white spruce (Picea Glauca)
in well drained sites, and Jack pine (Pinus banksiana, var.
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Fig. 1 Study area denoted in black is bounded by the
geographic extents 54° 19'N and -106° 0’ E (Northwest

corner), to 53°39'N and -104° 15’E (Southeast corner).
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Lamb) and black spruce (Picea mariana, var. Mill.) on drier
sites with coarse textured soils. In poorly drained areas, bogs
support black spruce and small proportions of tamarack (Larix
laricina var. Du Roi) (Rowg, 1977; LOWE et al., 1996). Also
present are fen areas, which are composed mostly of sedge
vegetation with discontinuous cover of tree species such as
tamarack. Forest disturbance is largely the result of localized
logging operations and fire. Recent fires have generally been
limited in extent and frequency through a comprehensive
forest fire suppression program (SELLERS et al., 1995).

Forest Inventory (GIS) and Landsat-5 TM Imagery

The provincial forest inventory system in Saskatchewan is
based on interpretation and digitization of air photos on an
approximate 15 year completion cycle (GILLIs and LECKIE,
1993). Inventory validation is undertaken through field visits
and the establishment of temporary sample plots. The forest
inventory data provided for this study is of variable vintage,
with 82.7% of the inventory compiled in 1984; 3.8% compiled
before 1984, and 13.5% compiled after 1984. To account for the
differing vintage between the LiDAR data and the GIS data, a
Landsat Thematic Mapper (TM) scene (Path 37, Row 22)
acquired from July 1994, was classified to provide an indication
of land cover classes commensurate with the field and LiDAR
acquisition programs. The classified image data also provides
for an indication of the within polygon land cover
characteristics with greater spatial detail than the forest
inventory data. The image was geocorrected using a first-
order polynomial and a nearest neighbour resampling
algorithm, resulting in a root mean square error of
approximately 24 metres. The Landsat TM imagery was then
classified using a hyperclustering and labeling approach based
upon an established protocol (WULDER et al., 2003). Using this
approach, 241 initial spectral clusters were generated and
subsequently merged down to represent the following general
land cover classes: coniferous, deciduous, mixed-wood, shrub,
herb, bryoids, wetland (treed), wetland (non-treed), exposed
land, and water bodies. These classes were then further
generalized using a polygon decomposition process whereby
the proportion of land cover classes within each forest
inventory polygon was determined (WULDER and FRANKLIN,
2001). The land cover class that represented the greatest
amount of area in the inventory polygon was then assigned to
the polygon. The forest inventory polygons provide a spatial
context for the comparison of the differing LiDAR flight lines.
The forest inventory polygons are also the units that are
subject to updating in an operational context (e.g., WULDER and
SEEMANN (2003)).

SLICER LiDAR Data

The SLICER instrument, developed at the NASA Goddard
Space Flight Center, is a scanning modification of a profiling
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laser altimeter (BLAIR ef al., 1994). The SLICER is a LiDAR
system that digitizes the backscattered return signal resulting
in the capture of a full waveform. The instrument records the
vertical distribution of illuminated surfaces within the laser
footprint. The SLICER data used in this study was collected as
part of the BOREAS project in July of 1996 (HARDING, 1998).
Based upon the sensor configuration, the vertical resolution of
the SLICER is approximately 1m, with a horizontal resolution
of approximately 9m, and with five adjacent footprints resulting
in an approximate 45m wide swath. In this study the footprint
diameter was approximately 9m, varying by approximately +
5% (or + 45cm), due to laser divergence and changes in the
distance from the aircraft to the ground.

The BOREAS LiDAR data was processed from the raw
data into variables representing key components of the sensed
waveform (HARDING, 2000). The height recorded for each
LiDAR pulse was determined as difference between the
“ground start” variable (ie., ground inferred from the
distribution of energy indicating a terminal location), and the
detected laser returns indicative of the canopy top. The
geolocation of the height value for each LiDAR footprint was
also required in order to compare different height estimates.
The location of the footprint is referenced to the first detected
reflection (i.e. the canopy top). Accordingly, the absolute geo-
location accuracy of footprint locations is limited by the degree
of elevation change within the footprint, the differential GPS
positioning of the aircraft, information on the laser pointing as
established by an Inertial Navigation System (INS), and the
encoding of the scanning mirror angle. Tag time errors in the
independently recorded data streams, where the range and
angle are in one data stream and GPS information in another,
may introduce occasional geo-location errors. As a result, the
footprint location accuracy can be expected to be at the scale
of the laser footprint, in this case about 9m.

Stability Analysis

To undertake the point stability analysis, the following
procedure was used (as illustrated in Fig. 2):

® [or every LiDAR return, the height was computed
from the SLICER data stream;

® A 9m radius buffer was then placed around each
LiDAR return;

® LiDAR returns from adjacent SLICER flight lines
were then overlaid on the buffered returns;

® Any pair of LiDAR hits which fell within the 9m
buffer were tagged, the difference in height
calculated, and the horizontal distance between the
LiDAR returns recorded. The pair-wise selection of
points was done on a flight line-by-flight line basis.

For the polygon stability analysis (as illustrated in Fig. 2):
® The forest inventory polygons were buffered by 9m
to reduce any edge effect and geo-location issues.
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Fig. 2 For the point stability analysis (top panel) a 9m buffer
was applied to each LiDAR return. The height of
LiDAR returns from adjacent SLICER flight lines that
fell within the 9m buffer were recorded, as was the
horizontal distance between the two returns. For the
polygon stability analysis (bottom panel), the within-
and between- flight line standard deviations were
compared to assess the pattern of variation in LiDAR
heights.

e The SLICER flight lines were overlaid on the
buffered forest inventory polygons.

® An analysis of variance (ANOVA) was then applied to
the LiDAR height observations, stratified by polygon,
to assess polygon height stability.

e Within polygon standard deviation of the hits
between flight lines and within flight lines was
compared to assess the pattern of variation in the
LiDAR heights. The within line standard deviation is
a measure of the variability of height values that may
be expected for an individual flight line within a
polygon. Low values indicate little variability in
height values, likely cover type related, such as for
water or wetlands, while a high value indicates that

Wulder et al.

the height values may represent a mixture of tree
tops, canopy openings and within crown hits, with the
mixture and the values determined by the forest

cover type.
® The between line standard deviation indicates the
agreement of mean canopy height values of

individual flight lines passing through a polygon. A
low value indicates a high accuracy of the mean
LiDAR canopy height of a flight line and that a single
flight line across a polygon can provide a reliable
estimate of the average canopy height in the polygon.

RESULTS
Point Stability Analysis

Analysis of the adjacent SLICER flight lines indicates that
18,507 individual LiDAR hits fell within the 9m footprint of a
second hit. The height differences for measurements taken
within the same footprint zone were then stratified by the
nominal distance between paired measurements. By overlay-
ing the lidar returns on the Landsat derived land cover
the relationship between the two height
estimates used in the pairwise comparison of (purportedly)
the same cover type, and the degree to which their footprints
overlap, can be examined.

As a control, LiDAR returns occurring over water were
investigated separately. For LIDAR returns over water, the
height difference between pairs of LiDAR hits, spaced at 0 to
1m through to 8 to 9m, was always less than 1 meter,
indicating that multiple measures of height, even when
separated by a horizontal distance of up to 9m, were accurate.
Observed differences are likely the results of errors in of GPS
and INS adjustments, and possibly in some cases, shoreline
encroachment.

An example from a Landsat TM-classified coniferous
forest cover type is presented in Fig. 3; a large majority of pairs

classification,

of hits were within + 5m of each other. This figure also
indicates a number of pairs of LiDAR hits increases as a
function of distance, with approximately 200 pairs of LiIDAR
hits occurring within 1m of each cell, increasing to over 1600
for pairs within 9m of each other. By comparison, the
observations for a deciduous forest cover type (Fig. 4) show
less uniform and less consistent differences. Adjacent pairs
have height differences ranging from 0 to over 10m for
nominal distances between returns of 3m to 9m. Results for a
mixed forest cover type (Fig. 5) were, as expected,
intermediate relative to results for areas dominated by
coniferous and deciduous species.
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Fig. 3 Bar graph illustrating variability of SLICER height
estimates as a function of multiple measures of the
same location and area, stratified as coniferous land
cover class.
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Fig. 4 Bar graph illustrating variability of SLICER height
estimates as a function of multiple measures of the

same location and area, stratified as deciduous land
cover class.
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Fig. 5 Bar graph illustrating variability of SLICER height
estimates as a function of multiple measures of the
same location and area, stratified as mixed-wood land
cover class.

Within Polygon Stability Analysis

In total, 360 polygons were intersected with 2 or more
flight lines, representing 152,292 LiDAR returns. Most
polygons had only two flight lines, with only 5% of polygons
having more than 5 flight lines (Table 1). Only polygons with
2, 3, or 4 flight lines were included in the analysis. The within
polygon stability analysis is undertaken through an analysis of
variance (ANOVA) generating the within flight line and among
flight line height variability of the forest inventory polygons.
As a comparison, 5919 LiDAR heights from multiple flight
lines over three water polygons were used with a between line
mean standard deviation of 0.15m and a within line mean
standard deviation of 0.69m. The low values for both the
between and within flight line variation, indicate, as expected
both a high precision [variation within a flight line] and
accuracy [variation between flight lines] of LiDAR data taken
over flat surfaces. Corresponding results for vegetated
surfaces reflects the variation sensed in the surface cover and
its spatial distribution.

Of the 360 forested inventory polygons with multiple
flight lines, the majority (275) were classed as coniferous from
the Landsat imagery. The remaining forested polygons were
either deciduous or mixed forest classes. Due to a lack of
variation between cover types, the forest cover types were
pooled and the tables illustrating within and between polygon
standard deviation results are combined for all forest cover-
types.
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Over all classes, the between line results indicate, for
example, that when 2 flight lines are flown over a polygon the
estimates of mean polygon canopy height are within + 1 meter
of agreement in 73% of the examined polygons and within + 2
meters in 89% of cases (Table 2). As the number of flight lines
per inventory polygon increases, the agreement between the
heights decreases, with only 53% of polygons having height
estimates within + 1m.

Within polygon, similar trends are noted in the within line
variability which indicates that along the flight line, height
varies considerably with variation up to + 5m in nearly 90% of
cases (Table 3). As more flight lines are added into the
polygon this variation actually increases with approximately
80% of the polygons having + 5m of height variation. The
results indicate that each flight line is in close agreement in
the variation detected; however, each flight line encounters
different height structures within the polygon. This confirms
that the polygons are in reality, not entirely homogenous and
there is height variability within each stand; yet, each overpass
is capturing the heterogeneity within the stand as a whole, in a
similar manner. A caveat to this interpretation is a requirement

Table 1 Frequency of occurrence of flight lines collecting

data on the same polygon.

# flight lines # polygons

2 264
3 56
4 22
5 5
6 6
7 2
8 3
9 1
10 1

Total polygons 360

Wulder et al.

that the inventory polygons used for context are not too old,
with age as an indicator of the possibility of disturbance (e.g.,
fire, blow-down, or harvest) having occurred, potentially in a
variable manner within the polygon, and subsequently
captured with the lidar.

DISCUSSION

The provincial forest inventory program in Saskatchewan
requires the measurement of tree heights to the nearest 5 m
class (Giiuis and Leckig, 1993, p. 53). The results from the
SLICER LiDAR data indicates that the precision of single point-
based measurements are well within the jurisdictional
requirement in coniferous forests stands, with 93% of all paired
LiDAR hits within 9m distance of each other being within + 5m
in height. This result increases to 95% of all paired hits being
within + 5m in height at distances less than 2m apart. In the
case of deciduous forest stands, 82% of all paired LiDAR hits
within 9m of each other are within + 5m in height, which
increases to 96% of all paired hits being within + 5m at
distances less than 5m apart.

As previously discussed, the SLICER LiDAR is a full
waveform LIDAR instrument covering a moderate spatial
footprint area (9m). The instrument detects “ground start”
which is triggered by a return of the laser pulse above a preset
threshold. Given a 9m footprint, in most cases the top of a tree
canopy is likely to be within the footprint (assuming a tree
crown size approximately commensurate with the footprint)
making the “ground start” indicator a robust and significant
predictor of tree height. The precision of these measures as
demonstrated in this paper supports this view. Caution should
be taken however when applying these results to small
footprint LIDAR surfaces. In these cases, the footprint is much
less (< 50cm) with a discrete sampling distance such as 1.5 -
5m. Thus the probability of a hit at the very apex of the crown
is also less likely. As a result, small footprint LIDAR estimates

Table 2 Relative frequencies of between line standard deviations of canopy heights in GIS polygons.

Between line standard deviation (m)

Otol 1to2 2to3 3to4 4to5 >5 count mean
e i he e 2 73.7% 161% 5.7% 2.4% 18% 03% 334 0.705m
polygon 3 65.2% 23.6% 6.8% 22% 11% 1.1% 89 0.892m
4 53.1% 281% 94% 0.0% 6.3% 3.1% 32 1.372m

Table 3 Relative frequencies of within line standard deviations of canopy heights in GIS polygons.

Within line standard deviation (m)

0Otol 1to2 2to3 3to4 4tob 55 count mean

) 2 45% 144% 335% 24.0% 12.0% 11.7% 334 3.16m

N‘imber of lines per 3 34% 135%  258% 24.7% 213% 11.2% 89 3.36m
polygon 4 31% 187% 250% 281% 6.8% 188% 32  3.25m
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of tree height whilst highly precise (i.e. repeat measurements
are similar, tightly scattered around a mean that may be
biased) are often significantly negatively biased. The stability
of small footprint LiDAR estimates of height would be
expected to be similar to the findings made here, with the
variation found at the scale of the smaller footprint.

The results of this study also have implications for broad
scale LiDAR applications, and possibly to space-borne LiDAR
design. Forest stands are highly variable. The process of
defining forest stand boundaries for inventory and manage-
ment attempts to delineate stands of common structure,
condition and species composition, however considerable
variation still exists within each stand. This variability is well
captured by LiDAR hits through the stand; however, these
results also indicate that multiple hits along a scan line can
capture this variation adequately. These findings may aid in
the design of future space borne LiDAR instruments - the
concentration of measurements along a single line may be
preferable to a dispersion of returns across a larger number of
flight lines.

CONCLUSIONS

In previous studies, the estimation of canopy height
from LiDAR observations has proven effective and is
becoming an accepted methodology for forest inventories. The
consistency of LiDAR height estimates is critical for forest
managers considering the application of LiIDAR data into
existing and new forest inventory data collection exercises.
The consistency of the SLICER height data, on both a point
and polygon basis, illustrate the utility of LIDAR in forest
inventory surveys, for sampling of forest structural conditions
(including transects), and studies requiring scaling of LiDAR
measures.

Recording and evaluating multiple LiDAR hits within the
footprint threshold around the same location indicates that
variability in LiDAR heights is limited when the separation
between observations is small. In consideration of the boreal
forest cover of this central Saskatchewan study area; estimates
of canopy height from multiple flight lines through individual
polygons indicate an acceptable level of variability related to
the path taken over the polygon. The between line standard
deviations indicate, in the case of 2 flight lines through a
polygon, that height estimates are within 1m in over 70% of
cases. The within line standard deviations indicate that there is
considerable variability of height values collected within each
line. Considering both between and within line standard
deviation results, we conclude that within each polygon there
is variability in LiDAR heights and that this variability is well
captured by collecting data over any portion of a polygon.
These results, on a point and polygon basis, indicate the utility
of LiDAR data as a sampling tool in a forest inventory context.

J. For. Plann. 13:279-286(2008)
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Regional Forest Inventory using an Airborne Profiling LIDAR

Ross Nelson™', Eesset™, Terje Gobakken*’, Goran Stahl*' and Timothy G. Gregoire*’

ABSTRACT

A 5,159km profiling airborne LiDAR data set consisting of 56 parallel flight lines (fls) systematically spaced one
kilometer apart acquired over the State of Delaware (USA) in y2000 are used to test the accuracy and precision of
LiDAR-based forest inventory estimates. Nonparametric techniques is employed to develop simple linear
regressions (SLRs) relating ground-measured biomass to laser height and crown closure. The ground-laser models
are used to estimate total aboveground dry biomass at the county (3 counties in Delaware - 1,124km?, 1,542km? and
2,539km®) and State (5,205km?) levels. The laser estimates are compared to U.S. Forest Service-Forest Inventory
and Analysis (FIA) estimates from a 1999 ground-based survey of 215 FIA plots. In addition, the 561 data set is
treated as a population and subsampled to test three variance estimators. The three variance estimators include
weighted versions of the simple random sampling (SRS) estimator, a successive differences (SD) estimator, and a
Newton’s Method (NM) estimator. Results, constrained to this particular 56 fl data set and post-stratification,
indicate the following: (1) Using all 56 fls in conjunction with the nonparametrically derived SLRs, LiDAR-based
estimates of biomass are within 4%-24% at the county level and 14%-18% at the state level. (2) Across the 3 counties
and State, considering the full range of flight line sampling intensities (from 2 to 28km between fls), the SRS
estimator most closely tracks systematic sampling variability. The SD estimator is most conservative, consistently
overestimating biomass variability by ~15%. (3) When a limited, more realistic range of inter-flight line distances
from 2-6km between parallel fls is considered, the behavior of the SRS estimator changes markedly. The SD and
NM estimators overestimate systematic standard errors (SEs) by ~18%, whereas the SRS estimator becomes the
most conservative, overestimating systematic SEs by ~30%. This SRS role reversal from least to most conservative
as the distance between fls decreases suggests that the fls spaced 2-6km apart are, in Delaware, spatially
autocorrelated. We suggest that analysts employ the SD or NM estimators when fls are closely spaced, e.g., 2-6km
apart. (4) Inclusion of prediction error, i.e., the residual noise around regression lines used to predict, for instance,
biomass as a function of profiling LiDAR height measurements, adds approximately 0.7-1.2 t/ha (an 8-15% increase)
to the biomass standard error, averaged across strata and sampling intensities. (5) The positive relationship
between the distance between flight lines and the systematic standard error appears to be generally linear (albeit
noisy) for a given cover type and study area. Figures are provided illustrating the empirical relationship between
flight line distance and systematic SE, by stratum within study area. These may be used to guide the design of
airborne LiDAR-based forest surveys on areas from 1,000-5,000km?.

Keywords: profiling LiDAR, laser, systematic sampling

INTRODUCTION

Airborne lasers, both scanning and profiling, have been
and are being used for regional forest inventory. Scandinavian
researchers employ small footprint scanning LiDARs to
conduct wall-to-wall forest inventories on 50 - 900km? parcels
in Norway (NZESSET, 2004a; b; NA&ESSET et al., 2004). The level of
acceptance concerning the accuracy and reliability of the
science, in fact, has risen to the point where private companies
have commercialized their LiDAR-based forest inventory
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products (E. N&SSET, T. AASLAND, pers. comm.). In the state of
Delaware, profiling data have been used to estimate forest
volume and biomass, impervious surface area, open water area
(NELSON et al., 2003a), carbon (NELSON et al., 2004), and
wildlife habitat area (NELSON et al., 2005). In this study, that
same Delaware profiling data set is used to look at additional
questions regarding large-area sampling using airborne
LiDARs.

The objectives of this study are threefold: (1) to report the
accuracy and precision of regional airborne LiDAR-based
forest inventory, (2) to investigate three different variance
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estimators to see which best characterizes systematic
sampling variability, and (3) to provide some level of guidance
with respect to flightline (fl) spacing in those situations where
airborne laser profilers are used as sampling tools for large-
area (1,000-5,000km?) forest inventory.

A small, portable airborne LiDAR profiler (NELSON et al.,
2003b) was used to systematically sample the State of
Delaware, on the mid-Atlantic coast of the eastern United
States, during the summer of y2000. Delaware is a small,
relatively flat state encompassing 5,205km*. According to a
1997 airphoto-based GIS (University of Delaware Spatial
Analysis Laboratory - http://www.udel.edu/FREC/spatlab/,
LA=April 23, 2007), approximately 34% of the state is forested,
44% supports agriculture, 18% is residential-urban, and 4% is
inland water. Delaware is divided into three counties,
urbanized Newcastle County to the north (1,124km?®), and the
more agrarian Kent County (1,542km*) and Sussex County
(2,539km?) as one moves south. Profiling measurements were
collected along 56 N-S fls spaced one kilometer apart. The
shortest fl was 17km, the longest 153km; 5159km of profiling
data were collected and analyzed. Post spacing was nominally
25cm., and at a flying altitude of 150m AGL, the spot size was
~37cm.

METHODS AND MATERIALS

Statistical procedures outlined in Nelson et al. (2004, see
erratum) were used to develop county and state-level
estimates of forest biomass, specifically total aboveground dry
biomass. Nonparametric regression procedures were used to
fit simple linear models to relate ground-measured dry
biomass to laser height and crown closure. One hundred forty

Nelson et al.

two - 40m Line Intercept Samples (LIS, see DEVRIES, 1986)
were collected on the ground throughout the state in seven of
eight strata, four forest strata-hardwood/deciduous, mixed-
wood, conifer, wetlands, and three nonforest strata-agriculture,
residential, and urban/barren. An eighth stratum, open water,
was not sampled on the ground. One generic equation was
developed across the strata to produce a non-stratified
predictive equation. In addition, five stratum-level simple linear
regressions were calculated, one for each of the four forested
strata, and one collectively for the three nonforest strata. The
wetlands equation was used to predict biomass in the open
water strata. Stratified and non-stratified results were
compared to see if stratification improved accuracy and/or
increased precision. The single generic and five stratum-level
equations used in this study are reported in Table 1.

Regional estimates of biomass depend on the use of
predictive equations that relate biomass to laser measure-
ments. In this study, the equations reported in Table 1 are
used to calculate biomass on fl segments <40m long. Laser-
based predictions are summed within fls, and fl estimates are
averaged across the region to calculate county and state
estimates. Variance calculations at the regional level reflect fl,
not segment-level, variation. But the segment-level, laser-based
predictions, i.e., the b or b, in Table 1, upon which the entire
laser inventory is based, are themselves average responses.
There is scatter around a given prediction for a segment <40m
that we implicitly ignore in our variance calculations, and that
scatter is characterized by the root mean square error of the
SLR.

In this study, we look at the effects of including this
residual noise in the form of prediction error in our variance
calculations. We account for scatter about a given predictive
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Table 1. Non-stratified and stratified simple linear models used to predict biomass, b, in tons/hectare,
based on laser-measured heights, in meters, and crown closure, in percent.

R (t/ha) n .
Non-stratified model:
b=[(8788.5) (71,.)+0.001/1000.0 0.66 63.59 142
Stratified models:
hardwood b=1(106.80) () (g) — 31959.91/1000.0 0.30 115.51 24
mixedwood b=1(7259.2) (h.) — 36636.0]/1000.0 0.28 49.17 22
conifer b=[(9342.0) () — 7412.91/1000.0 0.44 68.05 23
wetlands b=1(506.1) (7%,.)+0.00] /1000.0 0.95 24.16 22
ag/res/urb b=1(6903.6) (,.)+0.001 /1000.0 0.76 41.60 51

where Z.=average height, all pulses in a segment <40m long; ha—quadratic mean height, all pulses; J,.=
quadratic mean height, canopy hits, and g=crown closure, 0-100%.

equation by adding a random normal component to each
segment-level, laser-based prediction, e.g., for hardwoods:

b = [(106.80) (/) (g) +31959.9]/1000.0

+(m)(s)¢1 +X'0(X'X)AIX(),

where m is a normally distributed random variable, 7~N(0,1),
s is the RMSE of the predictive regression reported in Table 1
(for hardwoods, s=115.51), x, and x, is the current laser
measurement and it's transpose, and (X'X) ' is the inverse of
the sum of squares and cross-products matrix of the
independent variables used to fit the linear equation. This
prediction noise, assumed to be homoskedastic and normally
distributed, is added at the segment level.

RESULTS

Accuracy and Precision of the County and State Biomass
Estimates

Accuracy figures were generated for systematic samples
of 14 fls, 28 fls, and all 56 fls, for stratified and non-stratified
models, with and without regression error included. The
y2000 laser estimates are compared with y1999 US Forest
Service-Forest Inventory and Analysis (FIA) estimates based
on 215 ground plots. Fig. 1 illustrates the accuracy of the 14
and 56 fl samples for the stratified models; the figures for the
other test cases are available upon request.

A number of observations are immediate. First, at this
scale, there appears to be no perceptible difference between
laser estimates or standard errors with or without regression
error included. This is to be expected since the random
variation about the predictive regression has an expected zero
mean. Second, the laser-based estimates are more precise than
FIA estimates, even when only 14 parallel fls spaced 4km apart
are considered, though this observation is tentative due to
additional considerations discussed below. Third, if we use the

J. For. Plann. 13:287-294(2008)

FIA estimates as the standard and assume unbiasedness, then
the airborne LiDAR profiler underestimates FIA total biomass
in Newcastle/Kent Counties, Sussex County, and Delaware by
4.5%, 21.9%, and 14.1%, respectively. These differences may be
due to (1) biased laser prediction equations and/or (2) the fact
that the estimates are not directly comparable. With respect to
(1), there is preliminary evidence that suggests that these
laser equations under-report biomass (G. PARKER,
comm.). With respect to (2), the FIA estimates reflect standing
stocks on “timberland”, i.e., “forest land producing or capable
of producing crops of industrial wood (more than 20 ft* per
acre per year) and not withdrawn from timber utilization”
(GriFFITH and WIDMANN, 2001). Twenty cubic feet/acre/year is
equivalent to 1.4m’/ha/yr. The laser estimates are based on
biomass found in the four forest classes defined by
photointerpreters working with 1992 color-infrared and 1997
B&W airphotos, a 1m spatial resolution, and a 1.6ha (4acre)
minimum mapping unit. Though the FIA and laser estimates

pers.

are not directly comparable, discussions with FIA personnel
suggested that this particular comparison was the best
possible given the inherent
methodology and forest class definitions.

It must be noted that the laser-based confidence limits
illustrated in Fig. 1 are probably not correct. There are at least
two reasons to question the veracity of these laser confidence
limits. First, recent evidence from a laser study in Quebec
indicates that covariance terms can markedly increase the

differences in sampling

variance of county and state biomass estimates. County-level
estimates of biomass are calculated as an area-weighted sum
of stratum estimates within the county. The county-level
estimate is, then, a linear sum, i.e., beouney = Wi (bs) + w2 (bs) + .....
+ ws(bs), where the b’s are biomass in tons/ha of strata 1 to 8
and w; to ws are area weights that sum to 1.0 (NELSON et al.,
2004; see Erratum, 2005). The variance of a linear sum is the
sum of the weighted variances + all possible covariance terms,
i.e., var (Deouns,) =w:* (var (b;)) +w.* (var (b2) ) +...+ws* (var (bs) ) +
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Fig. 1 Comparison of county and state USFS-FIA biomass estimates to stratified laser estimates based on (A) 14 fls-4km fl
separation, and (B) 56 fls-1km fl separation. Laser estimates without and with regression error (Lnr and Lrg, resp.)
included in calculations are shown. The black bars depict 95% confidence intervals calculated using a simple random

sampling estimator.

2uw,w:(cov (by, b2))+2w,ws(cov (bs, bs))+...+2wws(cov(bz,bs))

The cover type covariance terms were not taken into account
in the calculation of the county-level confidence limits because
we assumed that biomass estimates along flight lines are
independent (hence the covariances = 0). In hindsight, this is
probably a poor assumption. Likewise, the county-level
covariance terms were not taken into account at the State level
for the same reason. So those laser confidence limits in Fig. 1
may be biased downward. The second reason to question the
veracity of the confidence intervals has to do with an offsetting
inflationary effect that may occur when we treat a systematic
sample of flight lines as a random sample. This problem is
discussed directly below. The net effect of these two offsetting
trends is unknown; research is underway to address the
problems.

Variance Estimators for Laser Surveys

Fig. 1 depicts error bars calculated assuming that the

systematically acquired fls were actually a random sample.
Previous research has shown that the application of such an
SRS estimator in a situation where data were actually
systematically acquired may lead to an overestimation of the
sampling variability (OSBORNE, 1942; NYYSSONEN et al., 1967;
1971) if the study area is spatially ordered with respect to the
dependent variable, e.g., biomass. Two alternative estimators
might mitigate this SRS overestimation tendency (if it exists at
all) - a successive differences (SD) estimator and the Newton's
Method (NM) estimator (COCHRAN 1977). The SD estimator
calculates fl variation based on weighted, squared differences
between adjacent fls; the NM estimator works similarly but
looks at three adjacent fls instead of two. The 3 candidate
variance estimators, SRS, SD, and NM, were compared to
empirical systematic sample variances by treating the 56 fl
data set as a population. Formulas for the SRS, SD, and NM
estimators, and the systematic standard error formula are
provided below.
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Simple random sample (SRS) variance of the stratum estimates:

For a given repetition or collection of sampled flight lines,

R "ZIij(i,jk _51' )2
Vér(b,-):kjl? (l),
Wik= ,,{jk ,and ijkz 10,
L k=1

where

b; = an estimate of biomass/ha in the jth stratum across all

n; flight lines,

by = an estimate of biomass/ha for the jth stratum, kth

flight line,

lix = the length of interception of the jth stratum, kth flight

line, and

n; = the number of flight lines that intercept stratum j.
Note that #; does not necessarily equal the total number of
flight lines, n, flown over a study area because some flight
lines may not intercept stratum j.

We condition on the particular post-stratified sample that
we've selected, allowing us to treat », and [ as fixed quantities
when, in fact, they’re random variables. As a result of this
condition, however, all inferences and conclusions drawn from
study results are limited to the specific set of flight lines and to
the particular post-stratification used in this study.

Successive differences (SD) variance of the stratum estimates:

For a given repetition where the sample size is #; flight lines,

(n,-) Z(ij+ Wi, k 1)2(13,'1( _IA)j,lrl)2
k=2
8 (n,- - 1)
(2, LINDEBERG 1926, eq.4).

Vél’.;d(Bj) =

Newton’s method (NM) variance of the stratum estimates:

For a given repetition where the sample size is #; flight lines,

varwm(b;) =
(n;) Z(WM 1+ 2 W) + Wike 1) Gonr =2 Gn) +by041)°
k=2
96 (n; —2)
3)
Equation 3 is derived from a nonweighted equivalent

(CocHRAN 1977, pg. 225, eq. 8.45) and weights reported by
LINDEBERG (1926, eq. 6).

In the simulation that we report below, equations 1, 2, and
3 were computed for each systematic sample. The average
value of each was compared to the variance of b; observed in
the simulation. The latter is called the systematic variance.

J. For. Plann. 13:287-294(2008)
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Systematic variance:

Flight lines are systematically subsampled to calculate
systematic variability at a particular sampling intensity.
Sampling intensity is specified as a distance between adjacent,
parallel airborne LiDAR flight lines.

S5, — b))? S,

(1), where b,= nly (5)

Vér,‘,,,.(ﬁj) == =
sys

and
by = an estimate of of biomass per hectare for the 7th
systematic sample in the jth stratum for a given sampling
intensity, and
nys = the number systematic sample observations for a
given sampling intensity.

It turns out that the distance, in kilometers, between adjacent,
systematically subsampled flight lines equals 7,,. This identity
exists because we acquired flight lines 1km apart. This
systematic variance is the standard against which the three
variances estimators are compared.

The 56 parallel fls, acquired 1km apart, were divided into
systematic samples 2km apart, 3km apart, 4km,... up to half
the number of fls in the particular county or State. Newcastle
County was transected by 31 fls, Kent by 36 fls, and Sussex
County and Delaware by 56 fls. So systematic samples of fls
spaced from 2 tol5km apart were considered in Newcastle, 2
tol8km apart in Kent, and 2 to 28km apart in Sussex and
Delaware. For a given fl spacing and county/state, the "true"
systematic variance was computed as a function of the squared
difference between each systematic estimate of biomass and
the average of the systematic estimates. The SRS, SD, and NM
standard errors were compared with the systematic standard
error to see which estimator most closely tracked systematic
variability.

When we consider results based on the nonparametrically-
derived, non-stratified and stratified SLR models across the full
range of distances between flight lines and across all strata,
the SRS estimator does the best job of tracking systematic
sampling variability. The SRS estimator ranged from 93-105% of
the systematic SEs. The comparable range for the SD
estimator is 109-119%, and 97-118% for the NM estimator. A
percentage less than 100% indicates that the estimator is
underestimating the true systematic error; numbers greater
than 100% indicate conservative estimates.

The relationships among the three estimators change
when more realistic inter-flight line distances are considered.
If we consider more closely spaced flight lines, i.e., from 2-6km
between adjacent, parallel lines, then the SRS estimator
becomes the most conservative, ranging from 111-151% of the
systematic SEs. The SD and NM estimators are also
conservative, but the estimator/systematic ratios collectively
range from 109-133%.

These results, and the role reversal manifested by the
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SRS estimator from least to most conservative, indicate that
closely spaced flight lines, in Delaware, are spatially
autocorrelated. This spatial autocorrelation inflates the SRS
estimator. These results suggest that researchers should
employ the SD or NM estimator if (1) they space their flight
lines from 2-6km apart, (2) their study areas are on the order
of 1000-5000km?* in size, and (3) they believe that biomass is
spatially ordered across the landscape. We would argue that
many study areas show this spatial ordering. Delaware, for
instance, supports more biomass on the western side of the
State than on the wetter, sandier east side, and the N-S flight
lines capture this biomass gradient.

Laser Sampling Error, by Stratum and Study Area
Fig. 2 depicts systematic standard errors for the non-

stratified, nonparametrically fit SLR (the first equation in Table
1), with prediction error included, for the three counties and
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for the entire State. The areal extent of each stratum is
reported as a percentage, in parentheses, next to the stratum
name. In some cases, the stratum name (percentage) could
not be noted directly on the plotted line. In these situations, an
abbreviation is used (e.g., “res” for residential), and complete
information listed to the left, in square brackets. Though the
systematic errors reported in Fig. 2 are specific to the y2000
Delaware profiling lines and to our particular post-stratifica-
tion, it is our hope that researchers might find this information
useful when they design their own airborne laser-based forest
inventory on areas encompassing 1,000-5,000km?®.

We should note that systematic errors depicted Fig. 2 do
not suffer from the vagaries associated with missing
covariance terms and estimator differences discussed at the
end of Results Section A and the beginning of Section B
(above). These systematic errors are our ground reference
information; they are, in fact, true systematic sampling errors.
We continue to search for estimators that more closely track
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stratum in the County or State.
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these systematic errors.

Although the relationships are noisy due to the relatively
limited population and small sample sizes, trends are apparent.
Arguably, systematic SEs appear to increase linearly as the
distance between flight lines increases. Larger study areas
support smaller SEs due to the fact that a laser will measure
strata more frequently given a fixed distance between flight
lines. Note that the upper limits of the Y-axes increase as the
size of the study areas decrease. With respect to laser
sampling, the best-case scenario would be a requirement to
sample a low biomass, ubiquitous stratum on a large study
area, e.g., the agriculture stratum in Delaware. The worst-case
scenario is the opposite, i.e., the requirement to measure a
relatively rare cover type on a small study area that supports
high and/or inherently variable biomass loads, e.g., the conifer
or mixedwood strata in Newcastle County.

Stratification

In this study, stratification did not consistently improve
the strength of the predictive models (Table 1) or consistently
decrease standard errors. Looking at differences between non-
stratified and stratified SEs for forested strata, we found that
use of the stratified equations increased SEs, i.e., decreased
precision, by 2.5 + 4.3 t/ha, averaged across all sampling
intensities and study areas. The precision of the nonforest
strata, conversely, increased on average, with SEs decreasing
by 1.0 = 1.4 t/ha. The net effect across all 8 strata was an
overall reduction in precision, or an average systematic SE
increase of 0.8 + 3.7 t/ha if stratified predictive models were
employed to estimate biomass.

SUMMARY

The laser-based estimates of total aboveground dry
biomass underestimated FIA totals by 4-24% at the county level
and 14-18% at the state level. Though the two inventories are
not directly comparable, the level of disagreement suggests
that better methods need to be developed to relate airborne
LiDAR profiling measurements to ground-measured biomass.
In particular, we note the weak linear relationships between
LiDAR height measurements and ground-based estimates of
hardwood and mixedwood biomass. PoPEscU et al. (2003)
made similar observations concerning mid-Atlantic hardwood
versus pine cover types on a study area in central Virginia,
approximately 500km SW of our Delaware study area. K. ZHAO
(2007, pers. comm.) demonstrated that hardwoods put more
woody biomass into lateral growth, weakening the height-dbh
and therefore the height-biomass relationship on which LiDAR
researchers depend. He asserts, and we concur, that better,
more effective hardwood models are needed.

Fig. 2 provides guidance to airborne LiDAR researchers
designing flight plans for large-area forest inventory. The
figure reports standard errors that might be expected in eight

J. For. Plann. 13:287-294(2008)
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different strata on four different study areas ranging in size
from 1,100 to 5,200km®.

Of the three variance estimators considered, the SD and
NM estimators, though conservative, mitigate the overestima-
tion tendencies of all three estimators when flight lines are
spaced 2-6km apart. Based on these results, we suggest that
analysts employ the SD or NM variance estimators in
situations where the flight lines are closely spaced and/or
where a regional biomass gradient exists roughly perpendicu-
lar to the direction of the systematic, parallel flight lines. The
use of the SD or NM estimators should be considered a
stopgap while work continues to identify a variance estimator
that more closely tracks systematic sampling variability.
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Conifer Plantation Volume Estimation
by Remote Sensing without Parameter Fittings

Gen Takao™" **, Satoshi Ishibashi*', Masayoshi Takahashi*',
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ABSTRACT

The objective of the present study is to develop a transparent and verifiable model of volume estimation for
conifer plantations using remote sensing. The model is to be independent from observation, that is, ground truths
are not necessary for parameter fitting and model construction. To achieve it, the estimation process is divided into
two steps: direct measurements of physical parameters of stand, and a stand volume estimation by an external
model. As an external model, we adopt the stand density chart, which is a robust and general model of stand
volume growth and estimation based on a semi-empirical growth model of even-aged stands. It can estimate a stand
volume from a dominant height and a density, which can be directly measured by remote sensing. In the present
study, firstly, the iso-height curves, a sub-model of the stand density chart, are created from the external inventory
data. Then, the dominant heights and densities are directly observed by means of the airborne remote sensing.
Finally stand volumes are estimated by the observed dominant heights and densities using the iso-height curves.
We found that the new iso-height curves predicted the stand volume very well. The dominant height estimation was
reasonably accurate, too. However, there was a room for improvement for the stand density estimation. This
method will contribute the implication of the remote sensing technology to forest management by sharing the

concept and values with foresters.

Keywords: LiDAR, aerial photograph, stand density chart, iso-height curve, external model

INTRODUCTION

Application of LIDAR has been studied in forest resource
and structure estimations from varied aspects (LM et al., 2003;
NAESSET et al., 2004). Majority of the studies have depended on
fully statistical approaches, in which both the model
construction and its evaluation depend statistically on ground
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truths, like the classic optical remote sensing. For practical
purpose of forest management, however, more preferable are
universal models that require neither model selection nor
parameter fitting for each observation campaign. Such models
can reduce the cost of observation since they require neither
the ground truths for model construction nor the complex
processes of model selection.

It can be achieved by a two-step approach. At first,
physical attributes of forest stands are directly measured by
remotely sensed data, and secondly they are transferred to a
model, which is external and independent from the remotely
sensed data, for estimating an aimed attribute. LiDAR is an
appropriate tool to directly measure the spatial dimensions of
forest. OMASA et al., (2003) estimated carbon storage of some
Japanese cedar plantations by LiDAR height measurements
coupled with an external model derived from the inventory
data.

Foresters have been keen for developing models for
inventory that can estimate the resources by a fewer
measurable dimensions while be robust through a wider
region. The stand density chart (ANDO, 1982) is one of such
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models, which describes the relationships among stand
density, dominant height and volume, and their growths, for a
species in a region. The model structure is semi-empirical, and
the parameters are to be estimated by number of inventory
data. It can be a good external model combined with the
dominant height and density measurements by remote
sensing.

In the present study, we propose a new two-step
procedure to estimate the stand volume of conifer plantations
in a region; direct measurements of dominant height and
density as the first step, followed by a stand volume estimation
by the iso-density curve as the second step. By the results, we
discuss the source of biases and the possible implication of the
procedure.

METHOD
Study Area and Data

A study area of 10km length by 600m width was set on
conifer plantations in a national forest near City of Tomakomai,
Hokkaido, Japan (Fig. 1), which located on gentle and flat
slope at base of a volcano, Mt. Tarumae. The elevation of the
area inclined from ca 50m in the east end up to ca 200m in the
west end. Either of four major species, namely Picea jezoensis,
P. glehnii, Abies sachalinensis and Larix leptolepis, was planted
in about 65% of the plantations. The mechanized stand
management made unique linear planting patterns perpendicu-
lar to the forest roads especially at young stands. Undergrowth
was dominated by ferns and/or herbaceous plants, but they
were relatively thin.

Airborne LiDAR along with natural color aerial photos
were taken on the study area on September, 2002, whose
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specification can be found on Table 1. Digital Surface Model
(DSM) with a pixel size of 1m square was derived by
interpolating the first pulses. Digital Terrain Model (DTM)
with the same pixel size was derived by interpolating the last
pulses that had the
surrounded 5m by 5m square. Finally, Digital Height Model
(DHM) was calculated by subtracting DTM from DSM. Using
the DSM and natural color aerial photos, digital orthophotos
with the spatial resolution of 50cm were derived.

Ground measurement of stands was taken place in 2002 at
21 plots of different planted species and ages. Diameter at
breath height (= 1.3m, DBH), height and species of each tree
within plot were recorded. Stem volume for each tree was
estimated by the DBH and the height using the volume tables
provided by Forestry Agency. The area of the plots varied
depending on the tree densities so that each plot consisted of

local minimum altitude within a

Table 1  Specification of the acquired LiDAR data

Sensor type Optech ALTM 1020
Acquisition date 12 - 14 SEP 2002
Ground speed 230km/h
Absolute altitude ca 1,700m

Scan angle +10deg

Scan frequency 27Hz

Pulse frequency 25MHz

Pulse density > 1pt/m?* (ground)
Divergence Angle 0.2mrad

Footprint 34cm

Vertical accu. +0.15m
Horizontal accu. +(0.85m

i Smaipm
, 2 '
UBEIC Of KOREAc

(a) Japan

N wm

(c) Tomakomai National Forest
Black strip indicates the coverage
of the Lidar data

148

Fig. 1 Study site - Tomakomai, Hokkaido, Japan
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at least 30 planted trees and at least three iterations of the
planting pattern but not exceed 1,000m*. As a consequence,
the area of plot varied from 150m* up to 1,000m?*, the number
of pulses within the plot from 148 to 1612, and the number of
trees from 22 to 92. Note that the numbers of trees less than
30 were measured at plots of 1,000m?® The locations of the
plots were identified by either a simple survey or an
interpretation of the orthophotos. Additional measurement
was also done in 2004 at another 19 plots, which were used
only for evaluation of the iso-height curves.

Iso-height Curves

The stand density chart is a semi-empirical growth model
mainly applied to single age monoculture plantations, which
describes the relationship among the stand density, the stand
volume and the self thinning regardless of the stand age
(ANDO, 1982). In Japan, stand density charts have been
provided for major plantation species and regions by Forestry
Agency, local governments, and/or other organizations so that
forest managers can plan their operations and estimate the
harvests of their plantations.

In the stand density chart, stand volume V [m®/ha] is
calculated with stand density N and mean tree height H [m] by
the iso-height equation (1) (ANDO, 1982).

V=1/@H "+ a,H "/N) (V)

where ai, b, a., and b. are parameters depending on the
species and the region but independent from the age. Eq. (1)
indicates that a stand volume can be estimated only by the
attributes that can be observed from above by remote sensing.

However, it is not the mean tree height but the dominant
height that can be estimated from LIDAR data, and the
dominant height H, was not equivalent to the mean height H.
Thus, the eq. (1) should be redrawn as (2), and we should
provide the iso-height curves for the species of our interests
using the external plot measurements.

V=1/@H, "+a,H "/N) ®)

External plantation measurements from overall Hokkaido
Island (unpublished) were used to estimate the parameters in
eq. (2) for each species of P. glehnii, A. sachalinensis and L.
leptolepis. Numbers of the measurement were 165, 454 and 522
for the
measurements were available for P. jezoensis, the parameters

three species, respectively. Since not enough
for P. glehnii were used for the species.

These parameters were estimated by fitting (2) to the
above-mentioned external plantation measurements. The
fittings were done numerically with two specific strategies.
The first was that the variance of errors be equal independent
of the stand volume, which was from a practical purpose to
reduce the estimation error at higher stand volume. The
second was that the criteria of fitness be the least ratio of
contribution of the error instead of the least square of the
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error, by which underestimates at the higher stand volume,
and vise versa, were to be avoided.

The derived iso-height curves were evaluated by the
ground measurements.

Dominant Height Estimation

LiDAR pulses scarcely hit the tree tops, so it is difficult to
estimate the dominant tree heights directly from those pulses.
Instead, if a tree crown shape is simple and smooth, and the
tree sizes and their crown shapes are similar to each other, the
dominant tree height can be estimated as the limit of the
crown height distribution.

Let F as the ratio of the projection area of the canopy
higher than % [m] in a stand to the total stand area. The
expected ratio of LiDAR pulses whose heights above terrain
are higher than /% in the stand is equal to F, given the pulses
spread over the stand randomly or systematically. Plotting the
height of all the pulses in the stand in the order of height and
then normalizing the number of pulses into unity, an empirical
relationship between % and F, i.e. F = F [h] is derived (Fig. 2).
The empirical 4#-F curves derived from the study plots seem
linear in the middle part, although their overall shapes seem S-
shaped with turns at the both ends.

If all the trees in a stand have a same size and a same
shape of paraboloid of revolution, its A-F curve becomes
completely linear as eq. (3);

Flhl=-sh+ H, for H>=h>=0, @)

where s > 0 is a parameter determining the width of crown.
Even if all the tree shapes can be approximated as parabola,
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F: relative frequency of LIDAR pulses
higher than / in plot

Fig. 2 Empirical 4-F curves
Relative frequency, F, of LiDAR pulses higher than a
given height from terrain, 4. Each line represents
the relative frequency in one of 19 study plots.
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Fig. 3 Simulated relative frequencies of LiDAR
pulses higher than 2
A stand of 300 parabola-canopy trees with
different size distributions; Identical: All trees
have an identical shape with a height of 20m,
Normal: All trees have similar shapes with the
heights normally distributed with a mean of 20m
and a standard deviation of 4m, Uniform: All
trees have similar shapes with the heights
uniformly distributed between 16m and 24m.

there should be a variation in the tree sizes in the real stands.
In such a stand, # becomes higher than the linear relation for
lower F (Fig. 3). On the other hand, in a real stand, 2 becomes
lower than the linear relation for higher F due to the overlay of
adjacent crowns, the existence of gaps, etc. All these effects
can skew a linear A-F curve to an S-shaped one.

After the observation of the empirical 4-F curves (Fig. 2)
and the consideration of the h-F curve shapes as discussed
above, we decided to estimate the dominant height, H., by eq.
(3) fitted to a linear part of the h-F curve, assuming that the
planted tree shapes are parabola. A portion of 50% > F > 10% in
the h-F curve is arbitrary used to fit eq. (3) for each site.

They were evaluated by comparing with the 5 percentile
height of trees of the plots.

Stand Density Estimation

Stand density was estimated by counting the tree tops on
the orthophotos with a spatial resolution of 0.5m, which was as
twice fine as the DHM, using Local Maximum Filter (LMF)
(WULDER et al., 2000). Only the green component of the
orthophotos was used as B/W images for the analysis. For
each plot, a small part of the orthophotos including the plot
was extracted from a homogeneous part of the same
compartment, the area of which varied from 0.1ha to .25ha
depending on the stand condition. To decide the size of LMF,
azimuthal semi-variograms for every 15 degree were derived

Takao et al.

Table 2 Parameters for the iso-height curves
species a b a: b
P glehnii 0.0179 0.7463 13,261 3.3826
A.sachalinensis 0.9176 2.2106 1,349 2.4081
L.leptolepis 0.4546 1.7432 45,146 3.4458

for each plot. Since trees were planted linearly, the semi-
variograms varied with the azimuth. Thus, the size of LMF
window for a plot was decided as double the smallest range of
the variograms, which was visually interpreted. The number of
tree tops derived by LMF was then divided by the orthophoto
area to derive the stand density N [trees/ha] for each plot.

The estimated density was compared with the measured
density for each plot.

Stand Volume Estimation by Iso-height Curves

Stand volume of each plot was estimated from the
dominant height derived from DHM and the stand density
derived from the orthophoto by the iso-height curves (2) or
(3). The estimations were evaluated by the ground
measurements.

RESULTS

Iso-height Curves

Prior to evaluate the estimations by LiDAR, the iso-height
curves derived from the external
evaluated by the ground measurements of our plots. Derived
parameters for eqs. (2) and (3) are represented in Table 2 Fig.
4 shows the stand volume comparison between the ground
measurements and their estimates from the iso-height curves.
RMSE, bias, and the ratio of contribution of the estimates were
48.4m*/ha, —5.0m?/ha, and 94%, respectively.

measurements were

Dominant Height Estimation

The dominant heights at the 21 plots in 2002 were
estimated (Fig. 4). The coefficient of determination after the
degree of freedom adjustment was 0.97. There were no
significant differences found in the coefficient and intercept of
regression from 1 and 0, respectively (p > 0.4). However, there
was a bias of —0.5m. Regardless of species or height, the
method earned very accurate estimations.

Stand Density Estimation

Among the plots used above, 19 plots were used for stand
density estimation (Fig. 5); other 2 were dropped since there
crowns were too small to be observed on the orthophotos. In
the regression in log-log space, the coefficient of determina-
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tion after the degree of freedom adjustment was 0.74. After
dropping one plot, at where the sunlit floors through the
thinned canopy were apparently mistaken as tree tops, still the
coefficient was 0.76. The coefficient of regression was
significantly different from 1 (p < 0.0001) in either cases. The
bias was balanced as 0.0.

Stand Volume Estimation by Iso-height Curves

Finally, stand volumes were estimated from the LiDAR
estimations of dominant heights and stand densities using
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Fig. 4 Stand volume estimation from dominant height
and density measured at the sample plots
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the iso-height curves for the 19 plots (Fig. 7). RMSE, bias,
and the ratio of contribution of the estimates were
53.0m?/ha, —20.9m?*/ha, and 94%, respectively.
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DISCUSSION AND CONCLUSION

Dominant height was estimated very accurately. The
study site located on a flat and gentle slope, on which terrain
affected very little to the LIDAR observation. What will be the
effect on the dominant height estimation expected mathemati-
cally from steep slopes? In case the canopy shape is parabolic
aseq. (3),atree heightestimation is expected to be overestimated

as much as ﬁtanzﬁ on flat slope with an inclination angle of
6. Suppose g =1, which is extremely large for a conifer, the

tree height would be only 1m overestimated for a slope of 6 =
45 deg. In case the canopy shape is cone like young trees,
which had not been considered in the present study, there
would be no estimation bias due to the slope. Thus, this
dominant height estimation method is expected to be very
stable.

The effect of the dominant height estimation bias on the
stand volume estimation is represented as (4). The stand
volume bias is very sensitive to the dominant height bias in
general, and the bias is larger for taller trees for A.
sachalinensis and L. leptolepis, although it is not always the
case for P. glehnii.

v _ a,bH,"+ a,b,H," /N e @

oH, H,

In the present study, we arbitrarily assumed the crown
shape and size distribution of trees. Their structures and
relationships with LiDAR data should be further studied in
detail. Nevertheless, our results suggested that a wide range
of canopy information, not necessarily at the tree tops, can
earn a robust and straightforward estimation of the dominant
height, given a crown shape model.

Stand density estimation was not sufficiently accurate. It
needs a more accurate but still cost-effective method. Very
high LIDAR DSM might be an alternative to aerial photos,
however, it is not yet a practical option for operational forest
management for the time being, since it is much more
expensive than aerial photo to cover an area with a same
spatial resolution. In addition, aerial photo would have an
advantage in possibly screening the encroached broadleaf
trees from the targeted conifers with its multispectral
information.

The effect of the stand density estimation inaccuracy on
the stand volume estimation is approximated when the
inaccuracy is represented as the ratio as (5). In general, the
bias is larger for taller and/or sparser stand.
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Fig. 8 Stand volume estimation bias due to height
and density estimation bias

The bias contributions by the dominant height and
density estimations were estimated for the 19 plots (Fig. 8).
The stand density overestimates contributed to the volume
overestimates in the old sparse P. jezoensis stands, while the
dominant height underestimates contributed to the volume
underestimates in the young dense A. sachalinensis stands. It
is noted that the contributions of the two estimate biases were
at similar order despite the height estimate’s accuracy was far
superior to the density estimate’s.

The present study clearly defined the role of remote
sensing to measure only what it can see, and demonstrated
that the resultant methodology had not only a straightforward
and robust structure combined with existing knowledge and
data but also enough high estimation accuracy. However, there
was room for improvement of the direct measurements by
LiDAR, especially the stand density estimation. Site index, or
the stand age, was not included in the present study, which
should be addressed in future. Improving such sub-models
would make the methodology to be more robust.

The proposed methodology not only offers the cost
reduction by reducing the ground truth collections but also it
can share with foresters the concept and values of forest
resources derived from remote sensing using common
language. It is a very important point of view for the
implication of remote sensing to the real forest management,
which has scarcely been achieved so far (HOLMGREN and
THURESSON, 1998).
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Estimation of Stand Attributes in Cryptomeria japonica and
Chamaecyparis obtusa Stands from Single Tree Detection
using Small-Footprint Airborne LiDAR Data

Pl

Yasumasa Hirata™', Naoyuki Furuya®*, Makoto Suzuki*’ and Hirokazu Yamamoto ™"

ABSTRACT

Stand attributes such as stand density, stand height, stand volume, are important factors for sustainable forest
management. This study aimed to estimate stand attributes in Cryptomeria japonica and Chamaecyparis obtusa
stands in Japan from single tree detection using small-footprint airborne LiDAR data. Twenty circular sample plots
of 0.04ha were established for this study. Their stand densities were estimated from the number of treetops derived
from airborne LiDAR data using the local maximum filtering method. Stand densities derived from the field survey
in the sample plots were compared with those obtained from airborne LiDAR data. The coefficient of determination
between them was 0.92. Stand densities which were estimated from the airborne LIDAR data, were underestimated
in both young and mature stands. Stand heights, which were estimated from the airborne LiDAR data, were slightly
overestimated, but they were almost the same as the mean heights of dominant standing trees. Allometric
equations between diameter at breast height (DBH) and crown area obtained from airborne LiDAR data were
determined for each of two species, i.e., Cryptomeria japonica and Chamaecyparis obtusa, and DBH of individual
trees was estimated from the airborne LiDAR data. Stand volumes were estimated from the cumulative individual
volumes, which were derived from volume formulas with two variables, i.e., DBH and height, both obtained from
airborne LiDAR data. Stand volumes derived from the field survey were compared with those obtained from the
airborne LiDAR data. The coefficient of determination was 0.86. Stand volumes which were estimated from the
airborne LiDAR data, were underestimated because of the lack of suppressed tree volume; however, the degree of
underestimation was relatively low.

Keywords: airborne LiDAR, stand attribute, single tree, Cryptomeria japonica, Chamaecyparis obtusa

INTRODUCTION

Sustainability has recently been a key issue in forest
management, particularly after the UNCED (United Nations
Conference on Environment and Development), which is
commonly known as the Earth Summit, convened in Rio de
Janeiro in June 1992 (FujiMoRrl, 1996). Some initiatives for

sustainable forest management, such as the Montreal Process
(McDonNaLD and LANE, 2004; SIRY et al., 2005), the MCPFE
(Ministerial Conferences on the Protection of Forests in
Europe) Process replacing the Helsinki Process (MAYER, 2000;
PARVIAINEN and FrANK, 2003), the ITTO Process (ITTO, 2005),
as used as present criteria and indicators for the conservation
and sustainable management of forests. Japan is a signatory of
the Montreal Process and the extent of area by forest type and
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by age class or successional stage must be monitored as
indicators (MIURA and NAKASHIMA, 1996). These indicators are
fundamental to understanding present forest conditions and
monitoring their changes, and are essential for forest
management planning.

Japan has two independent forest inventory systems
(HIRATA et al., 2007). One is the forest inventory stipulated by
the forest planning system based on the forest law, in which
forest registers and forest planning maps are prepared. The
other is the forest resource monitoring survey, which is based
on a systematic sampling on a national-wide 4km grid
(PLANNING DIVISION IN FOREST AGENCY, 2004). The former is
based on sub-compartments and the rapid compilation of GIS
data on them gives us some understanding of the distribution
and composition of Japanese forests. However, information
about stand attributes in forest registers is not necessarily
reliable because it is input without field
confirmation. In addition, this inventory system sometimes
involves multiple forest types. As a result, only dominant
species and their ages in the sub-compartment are
demonstrated on the polygon of forest planning maps.

The latter system was started in 1999 in both private and
forests to better understand Japanese forest
conditions and their changes (IEHARA, 1999). The forest
resource monitoring survey aims to prepare objective data,
which are essential for planning regional forest management
and for obtaining national statistics of forest resources. They
are also required to understand biodiversity, productivity of
forest ecosystems, and the carbon cycle. The results are
reflected in the National Forest Plan. However, the sampling
plot area of the latter system is 0.lha per 16km? so we can
estimate some indicators of the Montreal Process with it, but
not the extent by forest type at the management level.

Remotely sensed data, especially from satellites and aerial
photographs, is used to identify forest patches and their spatial
attributes. At present, three-dimensional data and high-
resolution data, both spatial and spectral, are available (LEFSKY
and COHEN, 2003). Airborne LiDAR (Light Detection And
Ranging) data is a type of three-dimensional data and previous
studies have investigated its accuracy in estimating stand
attributes such as tree height (NASSET, 1997; MAGNUSSEN et al.,
1999; NasseT and BJERKNES, 2001; ST-ONGE et al., 2003),
number of stems (NASSET and BJERKNES, 2001; MALTAMO ef al.,
2004), stand volume (MALTAMO et al., 2004), as well as
individual tree attributes (HyyppPA and INKINEN, 1999; HYYPPA et
al., 2001; PERSSON et al., 2002; HiraTA, 2005a; 2005b;
TAKAKHASHI et al., 2005a; 2005b). This study aims to estimate
stand attributes in Cryptomeria japonica and Chamaecyparis
obtusa stands in Japan using small-footprint airborne LiDAR
data.

sometimes

national
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MATERIALS AND METHODS
Study Area and Sample Plots

The study area is located in the Tokyo University Forest
(35°10” N, 140°07" E; 50-370m above sea level) about 100km
southeast of Tokyo in Chiba Prefecture. Established in 1894, it
is the oldest university forest in Japan. The University Forest
covers an area of about 2,171ha, 40% of which is plantations
and the rest is natural or semi-natural forests. The mean
monthly temperature of this warm-temperate zone forest is
14.0°C, with the highest mean of 24.1°C in midsummer and
the lowest of 4.6°C in winter. Annual precipitation is 2,182mm,
concentrated from June to September and with little
precipitation from November to March. More than 280 species
of trees and 800 species of herbs, including 150 species of
ferns, are recorded on the vegetation list. Most of the
plantations consist of Cryptomeria japonica and/or Chamaecy-
paris obtusa (UNIVERSITY FOREST, THE UNIVERSITY OF TOKYO).

Twenty circular sample plots of 0.04ha were established
in Cryptomeria japonica and Chamaecyparis obtusa stands, with
ages ranging from 19 years to 102 years. The coordinates at
the centers of all sample plots were positioned with DGPS to
co-register airborne LiDAR data. DBH of all standing trees in
the sample plots was measured and the species were
recorded. Stand densities in the sample plots were calculated
from the number of standing trees per 0.04ha. Mean DBH of
sample plots ranged from 11.5cm to 58.0cm and stand
densities from 300trees/ha to 3,925trees/ha.

Tree height measurement is always time-and labor-
intensive. Hence, the height-diameter curve is used to
estimate tree height instead of actual measurements (INOUE
and YOSHIDA, 2004). The height of more than 40% of standing
trees was measured in each sample plot and the height of
other trees was estimated from the Nislund formula, a type of
height-diameter curve, as follows:

h=bh+d*/ (a+bd)* 1)

where, bh is breast height, & is tree height, d is DBH, and «a
and b are constants. The mean tree height in the sample plots
varied from 6.3m to 32.4m.

Airborne LiDAR Data

The ALMAPS-G4 (Asahi Laser Mapping System), which
consists of the ALTM 3100 laser scanning system (Optech,
Canada), GPS airborne and ground receivers, and the inertial
measurement unit (IMU) reporting the helicopter’s roll, pitch
and heading, were used to acquire airborne LiDAR data. The
laser scanner system transmits laser pulses at 1,064nm (near-
infrared) and receives the first and last echoes of each pulse.
The elapsed time between transmittance and reception is
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measured to calculate the distance between the system and
the object.

Airborne LiDAR data were acquired on 14 August 2005.
The flight altitude of the helicopter above the ground was
about 500 meters and the average flight speed was
approximately 19.4m/sec. The pulse repetition frequency of
LIDAR was 70kHz and the scan frequency was 27Hz. Its
maximum scan angle (off nadir) was 18°. The beam
divergence was 1.2 mrad. Therefore, the footprint diameter
was approximately 60cm. The interval between footprints was
about 25cm. Both first pulse and last pulse were acquired to
identify forest canopy and topography in rugged terrain.

Data from a region of interest (ROI), which was 200m in
width and 1,700m in length, was selected for this study. A
digital elevation model (DEM) and a digital surface model
(DSM) for the study area were prepared from the airborne
LiDAR data with 25cm cell size. Data for the digital canopy
model, which delineates canopy height from the ground, were
calculated by subtracting the DEM from the DSM.

Data Analysis

Treetops in the study area were identified from DCM
using a local maximum filtering method (WULDER et al., 2000).
Forest gaps were masked to avoid overestimating the number
of treetops. Areas that were considered gaps were confirmed
using a threshold which was decided from a histogram of
DCM. The number of treetops in each sample plot was
counted and used to calculate the stand density in each sample
plot. Stand densities derived from the field survey of the
sample plots were compared with those obtained from the
airborne LiDAR data.

Individual tree heights were determined as the values of
DCM at the positions of treetops. Because suppressed trees
cannot be observed from an aircraft, we assumed that
individual tree heights derived from the reverse image of
DCM corresponded to those obtained from the field survey
according to the size of the largest ones. Mean tree heights

that were derived from the airborne LIDAR data were
calculated for all sample plots. Mean tree heights correspond-
ing to trees identified from the airborne LiDAR data and those
of all trees for all sample plots were also calculated. Both types
of mean tree heights from the field survey were compared
with those obtained from the airborne LIDAR data.

Individual crowns were identified from a reverse image of
DCM by a watershed method with the gap mask. Here, we
also assumed that crown areas derived from the reverse image
of DCM corresponded to DBHs obtained from the field survey
according to the size from the largest ones. We investigated
the allometric relationship between DBH and crown area,
which could be expressed with the following equation:

y=ax’ 2)

where x is the independent variable, y is the dependent
variable, and a and b are constants. Using the crown area from
the airborne LiDAR data and the DBH from the field survey, a
and b of Eq. (2) were determined for each species with the
least-squares method. Individual volume was calculated from a
volume formula with two variables, i.e., DBH and tree height
derived from both the airborne LiDAR data and the field
survey. The formula is written as follows:

log v=p log d+q log h+r 3)

where, v is volume, and p, ¢ and » are constants which were
determined by the DBH class for Cryptomeria japonica and
Chamaecyparis obtusa respectively (PLANNING DIVISION IN
FOREST AGENCY, 1970): (Table 1). Stand volume was calculated
from the accumulation of individual volumes in each sample
plot. Stand volumes derived from the field survey of the
sample plots were compared with those obtained from the
airborne LiDAR data.

Analysis was mainly conducted using GIS and the image
processing software TNTmips version 6.7 (Microlmages Inc.,
USA).

Table 1 Constants in the volume formulas in Southern Kanto Region for
Cryptomeria japonica and Chamaecyparis obtusa by diameter class
Cryptomeria japonica
Diameter class q 7
4-10cm 1.753904 1.040853 - 4.172632
12-30cm 1.849344 1.008086 - 4.219069
32-40cm 1.944187 0.894801 -4.211821
42 and over cm 1.600066 1.075361 - 3.921218
Chamaecyparis obtusa
Diameter class q r
4-10cm 1.906941 0.942734 - 4.230151
12-20cm 1.867405 1.108487 - 4.354186
22 and over cm 1.710344 1.175119 - 4.229853

J. For. Plann. 13:303-309(2008)
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RESULTS AND DISCUSSION

Stand densities obtained from the airborne LiDAR data
were plotted against stand densities derived from the field
survey in the sample plots (Fig. 1). The regression line fitting
to the data by the least-squares method had an intercept of
127.7trees/ha and a slope of 1.07. The coefficient of
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Fig. 1 Relationship between stand densities derived from the
airborne LiDAR data and those obtained from the field
survey for the sample plots
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Fig. 2 Relationship between mean tree heights derived from
the airborne LiDAR data and those of all standing
trees obtained from the field survey for the sample
plots
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determination (R*) between them was 0.92 and RMS error
(RMSE) was 369.9trees/ha. Stand densities, which were
estimated from the airborne LiDAR data, were underestimated
in both young and mature stands. In young stands,
neighboring treetops are close together, making it difficult to
distinguish them with the local maximum filtering method. In
mature stands, some suppressed trees cannot be observed
after growth competition because of canopy layer. Particularly,
the stands densities were extremely underestimated in four
plots of Chamaecyparis obtusa stands, where stands were
considerably overcrowding because thinning operations were
delayed or had not been performed. Relatively high RMSE was
due to these underestimations. HIRATA (2005a) showed that
thinning intensity affected extraction rate of treetops from
DCM derived from airborne LIDAR data in a Cryptomeria
japonica stand. This result suggested that thinning operation
also affected estimation of stand density using airborne LiDAR
in Chamaecyparis obtusa stands.

Mean tree heights obtained from the airborne LiDAR data
were plotted against those corresponding to dominant trees
and the mean of all standing trees derived from the field
survey in the sample plots (Fig. 2 and Fig. 3), with regression
analysis results presented in Table 2. R* were high in both
analysis for dominant trees and all standing trees in the sample
plots, and RMSE for dominant trees is smaller than one for all
standing trees. Stand heights, which were estimated from the
airborne LiDAR data, were slightly underestimated in young
stands and overestimated in mature stands in both analysis for
the dominant trees and the all standing trees. In mature
stands, some suppressed trees normally cannot be measured
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Fig. 3 Relationship between mean tree heights derived from
the airborne LiDAR data and those of dominant trees
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Table 2 The results of the regression analysis between mean tree height obtained from the airborne LiDAR data and those

derived from the field survey for the sample plots

Tree height Intercept Slope Rr? RMS error (m)
All trees 1.93 0.84 0.99 1.89
Dominant trees 1.87 0.88 0.99 1.46
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g

by airborne LiDAR, therefore, mean height derived from
airborne LiDAR data become large as compared with the stand
height from the field survey.

The generalized allometric equation (Eq. 2) between DBH
(d) and crown area (¢) derived from airborne LiDAR data for
Cryptomeria japonica and Chamaecyparis obtusa was deter-
mined with the least-squares method as follows (Fig. 4):

d-11.861¢""
d=8.7803¢™

Cryptomeria japonica:
Chamaecyparis obtusa:

Stand volumes obtained from two variables, i.e., DBH and
tree height, which were estimated from airborne LiDAR data,
were plotted against stand volumes derived from the field
survey in the sample plots (Fig. 5). The regression line fitting
to the data by the least-squares method had an intercept of
9.6m*/ha and a slope of 1.22 (R* = 0.86; RMSE 153.5m?*/ha).
Stand volumes, which were estimated from the airborne
LiDAR data, were underestimated because of lack of
suppressed tree volume data, but the degree of underestima-
tion was relatively low.
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CONCLUSIONS

In this study, we estimated stand attributes in Cryptomeria
japonica and Chamaecyparis obtusa stands in Japan from single
tree detection using small-footprint airborne LiDAR data.

The findings are summarized below:

1. Stand densities, which were estimated from the airborne
LiDAR data, were underestimated in young and mature
stands. The regression line fitting to the data by the least-
squares method had an intercept of 127.7 trees/ha and a
slope of 1.07 (R* = 0.92; RMSE 369.9 trees/ha).

2. Stand heights, which were estimated from the airborne
LiDAR data, were slightly overestimated, but they were the
almost the same as the mean heights of dominant standing
trees. The regression line fitting to the data of mean
heights of all standing trees in the sample plots by the least-
squares method had an intercept of 1.93m and a slope of
0.84 (R* = 0.99; RMSE 1.89) and the regression line fitting to
the data of mean heights of dominant trees in the sample
plots by the least-squares method had an intercept of 1.87m
and a slope of 0.84 (R* = 0.99; RMSE 1.46).

3. Stand volumes, which were estimated from the airborne
LiDAR data, were underestimated because of a lack of data
on suppressed tree volume; however, the degree of
underestimation was relatively low. The regression line
fitting to the data by the least-squares method had an
intercept of 9.6m*/ha and a slope of 1.22 (R* = 0.86; RMSE
153.5m’/ha).

Recently, airborne LiDAR data has come to be used in
many domains of forestry. Some new experimental applica-
tions for airborne LiDAR data include quality assessment of
forest structure as habitats of birds and animals (HINSLEY et
al., 2002; NELSON et al., 2005), snow depth estimation in a
watershed for water control (OKAMOTO et al., 2004), design of
forest roads (ARUGA et al., 2005), change detection of forests
(Yu et al., 2006), and climatic damage assessment (TAKAO et
al., 2005; TacucHl et al., 2006). In these studies, forest
attributes are key factors derived from airborne LiDAR data,
which are used to evaluate wildlife habitats, watershed and
topographic properties, and change detection. Our results
indicated that there are several ways that airborne LiIDAR data
can be used as alternative methods of undertaking inventory
as well as ecological studies and others.
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