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Convolutional Neural Network Applied to Tree Species Identification 
Based on Leaf Images

Yasushi Minowa1,* and Yui Nagasaki1

ABSTRACT

We identified tree species based on leaf images with a convolutional neural network (CNN). We sampled approxi-
mately 200 to 300 leaves per tree from five tree species at Kyoto University Campus. Twenty to thirty 1.0 × 1.0 cm 
(256 × 256 pixel) leaf images were taken per leaf, from which 10,000 leaf images (2,000 × 5 individual tree species) 
were prepared for the sample data. Color, grayscale, and binary images were used as image types. We constructed 36 
learning models using based on differences in learning patterns, image types, and learning iterations. Performance 
evaluation of the proposed model was conducted using the Matthews correlation coefficient (MCC). Both training and 
test data had high classification accuracy. The mean MCC of the five tree species ranged from 0.881 to 0.998 for the 
training data and 0.851 to 0.994 for the test data. Classification accuracy was generally high for color images and low 
for grayscale images. We found that there were many cases where Cinnamomum camphora was misclassified as Quer-
cus myrsinifolia, or Quercus myrsinifolia was misclassified as Quercus glauca; most Quercus glauca, Ilex integra, and 
Pittosporum tobira trees were correctly classified using the training data; and misclassification using test data for Ilex 
integra was very low.

Keywords: convolutional neural network, image type, leaf image, Matthews correlation coefficient, tree identification

INTRODUCTION

The use of mobile terminals has been widely examined in 
various fields. For example, in forest science, a tree-retrieval 
system was proposed by Kumar et al. (2012) using a smartphone 
application called Leafsnap to retrieve and identify tree species. 
This application evaluates leaf shape images using a smartphone 
camera and automatically identifies 184 tree species primarily 
inhabiting North America. In addition, the digital picture book 
BIOME was developed to promote the conservation of biologi-
cal diversity while generating a profit. This application can rec-
ognize various living organisms by transmitting a photograph 
to an internet server and uses a game-like function to collect 
species information (BIOME, 2017). Similarly, we have focused 
on developing a high-precision auto-tree-identification system 
based on leaf images for various mobile terminals. Easily iden-
tifying tree species using this system may improve forest inves-
tigations or forest environmental education. For example, the 

system can be used as a substitute for picture books of flora or 
offer various digital tree-distribution maps on the web through 
GPS information, which may contribute to the forest science 
field. Moreover, by adding a game function as in BIOME, the 
system can support the learning and education of many people. 
Thus, we developed tree-retrieval algorithms to promote these 
objectives. Minowa et al. (2011) classified tree species based 
on leaf shape images using a self-organization map and a de-
cision-tree algorithm. Generally, most tree-retrieval systems 
perform identification based on leaf-shape images (Gouveia et 
al., 1997; Wang et al., 2000; Nam and Hwang 2005; Shen et 
al., 2005; Lee and Chen, 2006; Du et al., 2007; Kumar et al., 
2012). However, it is difficult to identify all tree species using 
only these images (Minowa et al., 2011). For example, when the 
leaf size is large or compound, a photograph must be taken from 
a long distance using a smartphone to include the whole leaf. 
This causes the details of the leaf image to become indistinct. 
Thus, Minowa et al. (2019) classified tree species based not only 
on leaf shapes but also on venation patterns. This improved the 
classification accuracy using only venation information as image 
features without leaf shape information. Although this approach 
shows high classification accuracy for training data, it does not 
always perform well on test data. Moreover, the authors used a 
fractal dimension or histograms of oriented gradients (Dalal and 
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Triggs, 2005; Yamasaki, 2010a) as image features for venation 
patterns. It is difficult to use this type of information because 
several image processing functions are necessary to extract leaf 
image features to apply the classification model.

Since McCulloch and Pitts (1943) proposed the formal 
neuron model, studies of artificial intelligence and its applica-
tions have greatly progressed. Particularly, with the evolution of 
computer resources and techniques after 2000, results obtained 
using "deep learning" techniques have attracted attention (Ya-
mashita, 2016). Convolutional neural networks (CNNs), which 
were proposed by LeCun et al. (1998), have contributed substan-
tially to the image-recognition field (LeCun et al., 1998; Okaya, 
2015; Yamashita, 2016). A notable example of a CNN, Alpha-
GO, which was developed by the Google DeepMind Company, 
was the first Go computer program superior to a professional 
human Go player in Tagai-sen (no handicap) using the deep Q-
network method (Silver et al., 2016, 2017; Ohtsuki, 2019). Deep 
learning produces superior results in image recognition because 
of innovations in advanced computing hardware as well as the 
use of a method that differs substantially from past image recog-
nition methods. Previous image recognition methods extract im-
age features in advance, which are inputted as training data into 
a learning model. The types of image features used have impor-
tant effects on classification accuracy; however, image features 
are difficult to specify because they vary between objects. Thus, 
extracting image features is greatly affected by the experience of 
researchers or developers (Yamashita, 2016). By contrast, deep 
learning can extract image features by itself and therefore is 
highly accessible, which means non-experts in image recognition 
can easily use deep learning (Makino and Nishizaki, 2018). In 
addition, most applications that perform deep learning use free-
license software available to the public. Therefore, researchers in 
various fields can perform image recognition using deep learn-
ing. In tree identification with machine learning or deep learning, 
the former uses venation patterns extracted from leaves based on 
the National Cleared Leaf Collection, housed at the Smithson-
ian Institution (Wilf et al., 2016), whereas the latter is based on 
point cloud data from laser-scanned forest data (Mizoguchi et 
al., 2016) or tree species identification using fine-tuning based 
on aerial photography images collected by a drone (Nakane and 
Wakatsuki, 2018). A previous study performed tree identification 
based on venation patterns but used machine learning with leaf-
image features (Wilf et al., 2016). Moreover, even if tree identi-
fication uses deep learning, such as that performed by Mizoguchi 
et al. (2016) and Nakane and Wakatsuki (2018), the classification 
is approximate and varies widely. Few reports are available on 
tree identification by deep learning based on venation patterns. 
However, this method would be advantageous for identifying 
tree species by mobile terminals, as it is not necessary to use the 
whole leaf image. This study was conducted to identify tree spe-
cies based on leaf images with a CNN. We divided one section 
of a leaf image into dozens of pieces of sample data that were 
inputted into the CNN model. We constructed various learning 
models based on differences in learning patterns, image types, 
and learning iterations, and verified the classification accuracy 

of the models for both training and test data.

MATERIALS AND METHODS

Study Site
We sampled 200–300 leaves from each of five tree spe-

cies, Cinnamomum camphora, Ilex integra, Pittosporum tobira, 
Quercus glauca, and Quercus myrsinifolia, at Kyoto University 
campus. We chose these five species as our test species because 
they had greater intraspecific variance in leaf shape and lower 
classification accuracy than other species in a previous study 
(Minowa et al., 2019). Tree species planted at Kyoto University 
campus were used primarily so that repeated tree sampling can 
be performed at the same sites using the same sampling protocol 
(Minowa et al., 2019); thus, samples can be compared more eas-
ily in future studies.

Leaf Image Processing
Leaves sampled at the Kyoto University campus were 

scanned using a GT-X970 (EPSON Co., Ltd., Suwa, Japan) with 
a color image resolution of 650 dpi. We used ImageJ 1.50 soft-
ware (NIH, 2014), an open-source image-processing program, 
for leaf-image processing, which was performed as follows. We 
randomly extracted 20–30 1.0 × 1.0 cm (256 × 256 pixel) leaf im-
ages from one piece of a leaf, excluding the edges, and prepared 
10,000 leaf images (= 2,000 × 5 tree species) as sample data. 
Color, grayscale, and binary images were used as image types. 
Figure 1 illustrates the three image types for the five tree species. 
Although our goal was to develop an auto-tree-identification 
system using mobile terminals for analyzing leaf images pho-
tographed with mobile devices, we used scanned images mainly 
because their resolution is higher than that of photographs with 
mobile devices. The results of this study may become a bench-
mark for analyses using mobile devices. Moreover, grayscale 
and binary images were used mainly because color images are 
extremely useful when photography conditions or environments 
are maintained, such as in indoor photography. However, color 
images are not always useful for uncontrolled environments such 
as outdoors, as they greatly depend on the hardware character-
istics of individual cameras, parameters such as sensitivity, and 
lighting color (Sato, 2011). For example, light- and shade-based 
techniques such as Harr-like features are mainstream approaches 
used for facial recognition (Papageorgiou et al., 1998), which 
uses grayscale. Moreover, because binarization is important in 
preprocessing for image recognition, binary images are used. 
Thus, we used grayscale and binary images in addition to color 
images in this study.

CNN and GoogLeNet
A CNN is a neural network model mainly used in the image 

recognition field. In the 2000s, histograms of oriented gradients 
and scale-invariant feature transform (Lowe, 1999; Yamasaki, 
2010b) were commonly used for image features in classification 
problems that used support vector machine classifiers (Vapnik 
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and Lermer, 1963; Yamasaki, 2010a). However, in 2012, at the 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC), 
a CNN with an AlexNet algorithm won the championship be-

cause of its overwhelming classification accuracy (Sanchez and 
Perronnin, 2011). A CNN is a deep neural network consisting of 
deep layers in several steps: convolution layers, pooling layers, 
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Fig. 1 Samples of leaf images for each tree species.
a) Color image; b) Grayscale image; c) Binary image.
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and a fully connected layer (Fig. 2). The convolution layer ex-
tracts local image features from a small area using convolution 
calculation for the input image. The pooling layer compresses 
image features by extracting the convolution layer. After many 
repetitions of these processes, the fully connected layer runs as 
the final process and the output is the final result (Yamashita, 
2016).

In the present study, we used GoogLeNet in some of the CNN 
algorithms. GoogLeNet is the 2014 ILSVRC champion (Sze-
gedy et al., 2015). Similar to the network in network (NIN) algo-
rithm proposed by Liu et al. (2014), GoogLeNet utilizes a micro-
network that can conduct a full connection between feature maps 
rather than the activation function. GoogLeNet consists of 22 
layers, such as inception modules, which are composed of plural 
convolutions or pooling layers (Yamashita, 2016).

Learning Environment and Models for the CNN
The learning environment for the CNN was a computer 

with a Linux operating system (Ubuntu 16.04 LTS), Intel Core 
i7–7700K central processing unit, and an NVIDIA GeForce 
GTX 1080Ti graphics processing unit. We used CUDA 8.0 and 
cuDNN 5.1 to support the deep learning by the graphics pro-
cessing unit (NVIDIA, 2019; Yamashita, 2016; Shimizu, 2017). 
The learning model for the CNN was DIGITS 5.0.0 (NVIDIA 
website), which enables web-based learning, and Caffe 0.15.13 
(NVIDIA, 2019) as a learning framework. Many previous stud-
ies have used DIGITS and Caffe for applications such as auto-
matic recognition of the microstructure of steel materials (Ada-
chi et al., 2016), medical-field methodology (Izaki, 2017), and 
automated classification of coronary angiography (Hasegawa et 
al., 2018). Morino (2017) also recommended that scientists and 
technicians use Caffe as the CNN method in deep learning for 
image analyses. Finally, Caffe is a representative framework in 
the deep learning field; therefore, it involves advanced tuning 
of hyper-parameters and speeds up learning and calculations. In 
addition, Caffe can mount DIGITS, which can be used with web-
based methods. Thus, we used DIGITS, Caffe, and GoogLeNet 
as tools for deep learning.

Simulation Conditions and Evaluation Performance of the 
Learning Models

We divided 10,000 leaf images into 10 equal sets that in-
cluded each tree species and set up four learning model types 
(Fig. 3). Learning model-1 (LM-1) used one set (= 1,000 images) 
as training data and verified itself. Learning model-2 (LM-2) es-
timated nine sets from the remainder as test data using the pa-
rameters learned by LM-1. Learning model-3 (LM-3) used nine 
sets (= 9,000 images) as training data and verified itself. Finally, 
learning model-4 (LM-4) estimated one set from the remainder 
as test data using the parameters learned by LM-3. We conducted 
10 iterations without duplication. Although deep learning is not 
necessary to prepare image features in advance, we did this with 
both LM-1 and LM-3 primarily because researchers or develop-
ers need to input a large amount of image data as training data 
to deep learning models. Large amounts of training data must 
be used in deep learning, but the actual amount necessary is 
not specified. Using LM-1 with LM-3, we hypothesized that 
the data requirements to identify tree species based on leaf im-
ages could be determined. We applied hyper-parameters used by 
GoogLeNet to all default values (Table 1). The numbers of ep-
ochs in this study were 50, 100, and 500. Finally, we constructed 
36 learning models (= 4 learning model types × 3 image types × 
3 epoch types) based on the learning patterns, image types, and 
learning iterations.

The performance of the proposed models was evaluated with 
the Matthews correlation coefficient (MCC) (Eq.(1)), which is 
an index for determining whether a classification is conducted 
without bias. The MCC ranges from –1 to 1 (Motoda et al., 
2006; Witten and Frank, 2011). In Eq. (1), both true positive (TP) 
and true negative (TN) are accurate classifications according to 
the classifier; the former is the positive example whereas the lat-
ter is the negative example for each piece of training data. A false 
positive (FP) occurs when the outcome is incorrectly predicted 
as 'yes' (or positive) when it is actually 'no' (or negative). A false 
negative (FN) occurs when the outcome is incorrectly predicted 
as negative when it is actually positive (Witten and Frank, 2011). 
Here, the MCC is the average of the sum of ten iterations for 
each tree species.

Fig. 2 Structure of a convolutional neural network.
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=
+ + + +

          
(1) 

RESULTS

Classification Accuracy for Both Training and Test Data
Table 2 shows the classification accuracy based on differenc-

es in learning patterns, image types, and learning iterations. The 
classification accuracy for the training data ranged from 0.881 
(LM-1, grayscale, 50 epochs) to 0.998 (LM-1, color, 500 epochs) 
(Fig. 4). Similarly, that of the test data ranged from 0.815 (LM-2, 
grayscale, 50 epochs) to 0.994 (LM-4, color, 500 epochs) (Fig. 

J. For. Plann. 26: 1–11 (2020)

Fig. 3 Learning patterns for tree identification.
Note: The number in each figure is the number of data points in the dataset.

Table  1 Hyper-parameters of the GoogLeNet algorithm
Parameters Setting Explanation

Base learning rate 0.01 Begin training at a learning rate of 0.01
Learning rate policy step By a factor of gamma following the step size
Gamma 0.1 Value to use in a learning rate policy
Momentum 0.9 Weight off the previous update
Weight decay 0.001 Heaviness decrement level of a learning rate for overfitting
Learning environments GPU Run using the GPU
Type of optimization algorithm SGD Stochastic Gradient Descent
Number of epochs 50, 100, 500 The number of learning iterations
Max iterations Automatic every model Number of times the parameters update
Step size Automatic every model The number of iterations to lower a learning rate
Snapshot Automatic every model Store frequency of the parameters
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4). Both the training and test data showed remarkably high clas-
sification accuracy. For each learning model, if the number of 

epochs in LM-1 was low, the MCC value was relatively low. 
The MCC in LM-1 tended to improve as the number of epochs 

Table 2 Classification accuracy according to the differences in learning patterns, image types, and learning iterations
(1) Color image
Learning 
models

Number of data Number of 
epochs

Matthews correlation coefficient
Training Test Cinnamomum 

camphora
Ilex  

integra
Pittosporum 

tobira
Quercus 
glauca

Quercus  
myrsinifolia

1 1,000 1,000 50 0.966 1.000 0.996 0.962 0.928
100 0.981 1.000 1.000 0.999 0.981
500 0.996 1.000 1.000 0.999 0.996

2 1,000 9,000 50 0.890 0.991 0.905 0.936 0.812
100 0.922 0.994 0.894 0.944 0.834
500 0.934 0.996 0.920 0.941 0.862

3 9,000 9,000 50 0.990 1.000 1.000 0.999 0.989
100 0.989 1.000 1.000 0.999 0.988
500 0.993 1.000 1.000 1.000 0.993

4 9,000 1,000 50 0.985 0.999 1.000 0.998 0.982
100 0.983 0.999 0.994 0.991 0.981
500 0.989 0.999 0.998 0.997 0.986

(2) Grayscale image
Learning 
models

Number of data Number of 
epochs

Matthews correlation coefficient
Training Test Cinnamomum 

camphora
Ilex  

integra
Pittosporum 

tobira
Quercus 
glauca

Quercus  
myrsinifolia

1 1,000 1,000 50 0.825 0.978 0.997 0.860 0.747
100 0.854 0.989 0.996 0.906 0.828
500 0.936 0.998 0.999 0.967 0.931

2 1,000 9,000 50 0.687 0.958 0.946 0.813 0.672
100 0.721 0.957 0.911 0.863 0.769
500 0.793 0.967 0.937 0.890 0.827

3 9,000 9,000 50 0.951 0.998 0.999 0.969 0.950
100 0.969 0.999 1.000 0.979 0.969
500 0.988 0.999 0.999 0.992 0.988

4 9,000 1,000 50 0.936 0.993 0.997 0.954 0.929
100 0.955 0.996 0.999 0.962 0.955
500 0.980 0.997 0.999 0.983 0.975

(3) Binary image
Learning 
models

Number of data Number of 
epochs

Matthews correlation coefficient
Training Test Cinnamomum 

camphora
Ilex  

integra
Pittosporum 

tobira
Quercus 
glauca

Quercus  
myrsinifolia

1 1,000 1,000 50 0.899 0.975 0.997 0.909 0.835
100 0.950 0.989 0.999 0.945 0.916
500 0.974 0.999 1.000 0.981 0.966

2 1,000 9,000 50 0.866 0.924 0.984 0.834 0.754
100 0.888 0.926 0.972 0.883 0.847
500 0.898 0.941 0.975 0.894 0.871

3 9,000 9,000 50 0.972 0.996 0.999 0.969 0.955
100 0.986 0.998 1.000 0.976 0.970
500 0.993 0.999 1.000 0.985 0.982

4 9,000 1,000 50 0.961 0.974 0.993 0.950 0.931
100 0.972 0.983 0.997 0.960 0.954
500 0.980 0.975 0.996 0.964 0.959

Note: Underlines in each table show that the MCC equals 1.00.
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increased. The MCC in LM-2 was lower than that of other learn-
ing models. Similar to LM-1, the MCC tended to improve as 
the number of epochs increased. The MCC in LM-3 indicated 
extremely high classification accuracy for all image types. For 
color images in LM-3, 100 epochs (MCC = 0.990) showed low-
er accuracy than 50 epochs (MCC = 0.993). The MCC values 
in LM-4 were similar to those of LM-3. Color images had the 
highest classification accuracy among all learning models. In 
addition, the MCC for all epoch numbers was over 0.9 when 
using color images, although there was much more test data than 
training data in LM-2. In both LM-1 and LM-2, the classifica-
tion accuracy of binary images was higher than that of grayscale 
images, while In LM-3 and LM-4, the classification accuracy of 
grayscale images was similar to that of binary images, except for 
the case of 500 epochs in LM-3.

Classification accuracy for each tree species varied accord-
ing to the image type. Using color images, the MCC of I. integra 
in LM-1 and both I. integra and P. tobira in LM-3 were 1.00 for 
all numbers of epochs (Table 2). The classification accuracy of 
Q. myrsinifolia was lower than that of other tree species for all 
learning model types; in particular, that of LM-2 ranged from 
0.812 (50 epochs) to 0.862 (500 epochs), which was much lower 
than in other cases. Using grayscale images, only the MCC of 
P. tobira in LM-3 (100 epochs) was 1.00 (Table 2). Most MCC 
values for both I. integra and P. tobira were over 0.99, and the 
lowest was 0.911 (P. tobira, LM-2, 100 epochs). Similar to the 
color images, the classification accuracy in LM-2 was relatively 

low overall, and MCC values for both C. camphora and Q. myr-
sinifolia with 50 epochs were much lower than those of other 
tree species (0.687 and 0.672, respectively). Using binary imag-
es, some MCC values for P. tobira were 1.00 (Table 2); this tree 
species tended to be identified with higher accuracy than other 
species for both color and grayscale images. The MCC values 
of C. camphora, Q. glauca, and Q. myrsinifolia were lower than 
those of other tree species in the same image types, while most 
MCCs in binary images were higher than those of the grayscale 
images.

Tendency for Misclassification of Each Tree Species
Figure 5 illustrates the misclassification patterns according 

to tree species. Using color images, LM-1 correctly classified 
all tree species except for C. camphora, which was misclassified 
as Q. myrsinifolia (12 misclassifications), and Q. myrsinifolia, 
which was misclassified as Q. glauca (2). The misclassification 
in LM-2 using color images was greater than that of other learn-
ing models. In LM-3 using color images, all tree species were 
correctly classified except for C. camphora, which was misclas-
sified as Q. myrsinifolia (196), and Q. myrsinifolia, which was 
misclassified as Q. glauca (7). In LM-4 using color images, Q. 
glauca was correctly classified. Overall C. camphora and Q. 
myrsinifolia tended to be misclassified as Q. myrsinifolia and 
Q. glauca, respectively; most Q. glauca, I. integra, and P. tobira 
species were correctly classified for all training data, while mis-
classifications of I. integra for the test data were very low.

J. For. Plann. 26: 1–11 (2020)

Fig. 4 Classification accuracy according to the average for five species.
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Fig. 5 Tendency for misclassification by learning patterns.
C.c: Cinnamomum camphora; I.i: Ilex integra; P.t: Pittosporum tobira; Q.g: Quercus glauca; Q.m: Quercus myrsinifolia. CL: 
Color image; GS: Grayscale image; WB: Binary image.
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For grayscale images, misclassifications occurred in all tree 
species in LM-1 and LM-2. Generally, classifications using gray-
scale images were similar to those using color images; however, 
misclassification rates were higher than those of color images, 
and there were numerous misclassification types not observed 
when using color images.

In LM-1 using binary images, I. integra and P. tobira were 
correctly classified. Conversely, LM-2 had many cases of mis-
classification overall. Classifications made using binary images 
were similar to those using color and grayscale images, and mis-
classification rates were lower than those of grayscale images. 
There were some misclassification types that were not observed 
in the color images; for example, P. tobira and Q. glauca were 
misclassified as I. integra.

In general, there were numerous cases of misclassification: 
C. camphora was misclassified as Q. glauca or Q. myrsinifolia, 
and Q. myrsinifolia as Q. glauca, for both the training and test 
data, respectively. The misclassification of I. integra was very 
limited, although there was some misclassification as Q. glauca. 
Both P. tobira and Q. glauca tended to be misclassified based on 
the image types.

DISCUSSION

We found that CNNs are among the most effective methods 
for tree identification because they can identify test data with 
high accuracy. This study included diverse leaf images from 
the same species by randomly extracting 20–30 1.0 × 1.0 cm 
images from various parts of a given leaf, which resulted in 
high-accuracy identification models for the training data. Simi-
larly, Wilf et al. (2016) used scale-invariant feature transform as 
image features for a support vector machine classifier to identify 
trees and achieved 72% accuracy for 19 botanical families with 
≥100 images. Although the present study differed in terms of the 
amount of training data and types of species, our CNN model 
still showed high classification accuracy for both training and 
test data.

In addition, the CNN model can identify tree species with 
high accuracy even without specifying where on the leaf the data 
should be extracted. Thus, the CNN model offers advantages for 
mobile terminal users with a smartphone, because a photograph 
of the entire leaf is not required. We speculate that the much 
lower classification accuracy in LM-2 was due to the amount 
of verification data (9,000 samples) being considerably greater 
than the amount of training data (1,000 samples), and leaf im-
ages used for the training and test data in the present study in-
cluded image types that were randomly extracted from various 
parts of the leaf. Although the classification accuracy in LM-2 
was lower than that of other learning models overall, it was much 
higher than that of previously proposed models (Minowa et al., 
2011, 2019; Minowa and Asao, in press); however, the number 
of tree species in this study was lower. A previous study using a 
CNN to identify five types of weeds reported classification accu-
racies of 41% to 100% (Shindo et al., 2018), which was very low 

compared to the results of the present study, although the learn-
ing conditions differed (e.g., algorithms, image types). However, 
the authors suggested that a high classification accuracy cannot 
be assured when the number of tree species is low. Nevertheless, 
the classification accuracy of both the training and test data were 
high in the present study.

Among image types, classification accuracy was highest for 
color images and lowest for grayscale images. The amount of 
information decreased in the order of color, grayscale, and bi-
nary. Thus, we expected that the classification accuracy would 
improve according to this order. In the present study, however, 
grayscale images provided lower accuracy than the other image 
types. In addition, when users actually photograph a leaf with 
a smartphone, color images may be greatly influenced by the 
photo environment (Sato, 2011). Thus, when developing a tree 
identification system for mobile terminals, binary images should 
be considered because they provide robust results under different 
environmental conditions at the cost of slightly lower accuracy 
than color images (Sato, 2011).

CONCLUSIONS

In this study, we identified tree species based on leaf images 
using a CNN method. Although we used sub-regional leaf im-
ages composed mainly of venation, it was possible to identify 
tree species with high classification accuracy with sample data 
comprising only partial leaf images randomly extracted from the 
whole leaf. Compared to tree identification using decision-tree 
or neural-network models based on leaf shapes (Minowa et al., 
2011, 2019; Minowa and Asao, in press), image recognition with 
deep learning models, such as a CNN, make it possible to build 
a classification model without processing the extracted leaf im-
age. The proposed models with the CNN show higher classifi-
cation accuracy than previous proposed models (Minowa et al., 
2011, 2019; Minowa and Asao, in press). In addition, the CNN 
is among the most effective techniques for building an auto-tree-
identification system for mobile terminals because it can identify 
a tree based on a part of the leaf image without the whole leaf. 
However, there were some limitations to this study; namely, only 
five tree species were used. We also did not verify the amount of 
training data necessary to identify tree species. Thus, future stud-
ies should consider a larger number of tree species, types of leaf 
images used for training data (e.g., venation patterns or image 
types), differences in deep-learning algorithms, and differences 
in the amount of training and test data.
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